Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(21): 6790-6803, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37610886

RESUMEN

It is often expected that Zn decreases Cd accumulation in plants due to competition for the same transporters. Here, we found that increasing Zn supply markedly increased the root-to-shoot translocation of Cd in rice. RNA sequencing showed that high Zn up-regulated expression of genes involved in glutathione biosynthesis and metabolism and the Zn/Cd transporter gene OsHMA2, but down-regulated expression of genes related to Zn uptake. Knockout of the iron or Zn transporter genes OsIRT1, OsIRT2, or OsZIP9 did not affect the Zn promotional effect on Cd translocation. Knockout of the manganese/Cd transporter gene OsNRAMP5 greatly reduced Cd uptake but did not affect the Zn promotional effect. Variation in the tonoplast transporter gene OsHMA3 affected Cd translocation but did not change the Zn promotional effect. Knockout of the Zn/Cd transporter gene OsHMA2 not only decreased Cd and Zn translocation, but also abolished the Zn promotional effect. Increased expression of OsHMA2 under high Zn conditions supports the hypothesis that this transporter participates in the promotional effect of Zn on Cd translocation. The results also show that OsIRT1, OsIRT2, and OsZIP9 made only small contributions to Cd uptake under low Zn conditions but not under high Zn conditions, whereas the dominant role of OsNRAMP5 in Cd uptake diminished under low Zn conditions.


Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Zinc/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Translocación Genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
2.
J Exp Bot ; 70(10): 2857-2871, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30840768

RESUMEN

Rice (Oryza sativa) is a major dietary source of the toxic metal cadmium (Cd). Reducing Cd transfer from soil to the rice grain is important for food safety. Rice cultivars vary widely in their Cd accumulation, but the genetic basis for this variation is not fully understood. Based on field and pot experiments comparing 26 rice cultivars, we identified a cultivar with high Cd accumulation in grain (BG367, coded as W4) and a cultivar with low grain Cd accumulation (Huajingxian 74, coded as W0). W4 showed a higher Cd translocation from roots to shoots than W0. Using chromosome single segment substitution lines derived from the two cultivars, we mapped a quantitative trait locus for Cd accumulation in grain to a 400 kb region in chromosome 7. Using yeast expression assays and transgenic complementation, we identified OsHMA3 as the causal gene at this locus. Compared with OsHMA3W0, OsHMA3W4 has a deletion of 14 amino acids predicted to be in the ATP binding domain. OsHMA3W4 showed a complete loss of transport activity for Cd in yeast assays. Taking our findings together, we have identified a new allele of OsHMA3 with a total loss-of-function, resulting in greatly elevated Cd translocation to rice shoots and grain.


Asunto(s)
Adenosina Trifosfatasas/genética , Cadmio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Contaminantes del Suelo/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Bioacumulación , Transporte Biológico , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
3.
Chemosphere ; 352: 141295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309605

RESUMEN

Hierarchically porous magnetic biochar (HMB) had been found to act as an effective amendment to remediate cadmium (Cd) in water and soil in a previous study, but the effects on wheat growth, Cd uptake and translocation mechanisms, and soil microorganisms were unknown. Therefore, soil Cd form transformation, soil enzyme activity, soil microbial diversity, wheat Cd uptake and migration, and wheat growth were explored by adding different amounts of HMB to alkaline Cd-contaminated soil under pot experiments. The results showed that application of HMB (0.5 %-2.0 %) raised soil pH, electrical conductivity (EC) and available Fe concentration, decreased soil available Cd concentration (35.11 %-50.91 %), and promoted Cd conversion to less bioavailable Cd forms. HMB treatments could reduce Cd enrichment in wheat, inhibit Cd migration from root to stem, rachis to glume, glume to grain, and promote Cd migration from stem to leaf and stem to rachis. HMB (0.5 %-1.0 %) boosted antioxidant enzyme activity, reduced oxidative stress, and enhanced photosynthesis in wheat seedlings. Application of 1.0 % HMB increased wheat grain biomass by 40.32 %. Besides, the addition of HMB (0.5 %-1.0 %) could reduce soil Cd bioavailability, increase soil enzyme activity, and increase the abundance and diversity of soil bacteria. Higher soil EC brought forth by HMB (2.0 %) made the wheat plants and soil bacteria poisonous. This study suggests that applying the right amount of HMB to alkaline Cd-contaminated soil could be a potential remediation strategy to decrease Cd in plants' edible parts and enhance soil quality.


Asunto(s)
Microbiota , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Suelo/química , Triticum , Porosidad , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Grano Comestible/química , Antioxidantes/análisis , Fenómenos Magnéticos
4.
Plant Physiol Biochem ; 206: 108199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100890

RESUMEN

Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Cadmio/metabolismo , Zinc/farmacología , Zinc/metabolismo , Triticum/metabolismo , Fertilizantes , Suelo , Proteínas de Transporte de Membrana/metabolismo , Expresión Génica , Contaminantes del Suelo/metabolismo
5.
Chemosphere ; 357: 142070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641297

RESUMEN

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Asunto(s)
Compuestos de Amonio , Calcio , Teoría Funcional de la Densidad , Nitratos , Nitrógeno , Fósforo , Adsorción , Calcio/química , Nitrógeno/química , Fósforo/química , Nitratos/química , Compuestos de Amonio/química , Compuestos Férricos/química , Modelos Químicos , Concentración de Iones de Hidrógeno
6.
Huan Jing Ke Xue ; 44(5): 2889-2898, 2023 May 08.
Artículo en Zh | MEDLINE | ID: mdl-37177960

RESUMEN

The aim of this study was to explore the effect of P on the physiological mechanism of Cd and As uptake and transport of wheat seedlings. Taking Bainong 207 as the test material, we investigated the effects of exogenous P supply and P deficiency treatment on the growth, root morphology, photosynthetic parameters, antioxidant system, ion content, and rhizome transfer coefficient of wheat seedlings under Cd and As stress using hydroponic experiments. The results showed that compared with that in the P deficiency treatment, the supply of exogenous P significantly increased the chlorophyll content of wheat seedlings under As stress, promoted the growth and development of roots, and increased biomass, whereas there were no significant effects on the growth of wheat seedlings under Cd stress. The contents of P and Cd in the root system under the condition of Cd stress were significantly increased by the supply of exogenous P, and the contents of P and Cd in the aboveground part were reduced. At the same time, the P and As content in the shoot and the transfer coefficient of As from the root to the shoot under As stress were significantly improved. Therefore, the effects of P on the poisoning of wheat Cd and As in this study showed obvious differences. Under As stress, exogenous P supply mainly promoted the growth of wheat seedlings by improving the transport of As from the root to the shoot and the CAT activity in the root system, reducing the poisoning of As in wheat. Under Cd stress, P and Cd showed a certain synergistic effect, and the toxic effect of Cd on wheat was aggravated to a certain extent after the supply of P.


Asunto(s)
Plantones , Contaminantes del Suelo , Triticum , Cadmio/toxicidad , Raíces de Plantas , Antioxidantes
7.
Plant Sci ; 318: 111237, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35351309

RESUMEN

Screening and breeding of high-Zn-accumulating wheat cultivars have received increasing attention in recent years. However, the exact mechanism of Zn uptake and accumulation in wheat is not fully understood. Here, we investigated the physiological responses and TaZIPs gene expression in a low (Zhengmai0856, ZM0856) and a high (Aikang58, AK58) grain-Zn-accumulating wheat cultivars under hydroponic conditions with different levels of Zn supply. Results showed that AK58 was a Zn sensitive cultivar with better growth advantage, while ZM0856 was a Zn tolerant cultivar with higher capacity of Zn uptake. In addition, gene expression analysis showed that, the expression levels of the TaZIP3, TaZIP5, and TaZIP7 in roots were increased in both cultivars under Zn deficiency. In shoots, TaZIP3 and TaZIP6 transcript accumulation was lower in AK58 than ZM0856, whereas TaZIP7 showed the opposite effect. Moreover, multivariate statistical analysis (Pearson's correlation and PCA) showed that the mechanisms involved in Zn uptake and translocation was closely related to subcellular biosynthesis and ZIP gene expression regulation, whereas adequate Zn supply improved the Zn uptake and root-to-shoot translocation. These novel findings might be helpful for the molecular-assisted selecting and breeding of Zn-rich wheat cultivars.


Asunto(s)
Plantones , Triticum , Grano Comestible/genética , Grano Comestible/metabolismo , Fitomejoramiento , Plantones/metabolismo , Triticum/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA