Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biomacromolecules ; 25(6): 3475-3485, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38741285

RESUMEN

Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff ß-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo.


Asunto(s)
Alginatos , Regeneración Ósea , Resistencia a la Tracción , Alginatos/química , Regeneración Ósea/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Ácido Glucurónico/química , Ensayo de Materiales , Ácidos Hexurónicos/química , Andamios del Tejido/química
2.
Angew Chem Int Ed Engl ; : e202410383, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922734

RESUMEN

Hydrogel actuators with complex 3D initial shapes show numerous important applications, but it remains challenging to fabricate such actuators. This article describes a polyelectrolyte-based strategy for modulating small-scale internal stresses within hydrogels to construct complex actuators with tailored 3D initial shapes. Introducing polyelectrolytes into precursor solutions significantly enhances the volume shrinkage of hydrogel networks during polymerization, allowing us to modulate internal stresses. Photopolymerization of these polyelectrolyte-containing solutions through a mask produces mechanically strong hydrogel sheets with large patterned internal stresses. Consequently, these hydrogel sheets attain complex 3D initial shapes at equilibrium, in contrast to the planar initial configuration of 2D actuators. We demonstrate that these 3D actuators can reversibly transform into other 3D shapes (i.e., 3D-to-3D shape transformations) in response to external stimuli. Additionally, we develop a predictive model based on the Flory-Rehner theory to analyze the polyelectrolyte-mediated shrinking behaviors of hydrogel networks during polymerization, allowing precise modulation of shrinkage and internal stress. This polyelectrolyte-boosted shrinking mechanism paves a route to the fabrication of high-performance 3D hydrogel actuators.

3.
Small ; 18(2): e2104440, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738711

RESUMEN

The intellectualization and complication of existing self-shaping materials are limited by the inseparable monotonic relationship between their deformation rate and deformation degree (i.e., a higher deformation rate is accompanied by a high deformation degree). This causes that they can only deform from 2D to 3D states. Here, a simple yet versatile strategy to decouple the monotonic correlation between the deformation rate and deformation degree of self-shaping hydrogels is presented for achieving complex deformations from 2D to temporary 3D to 3D (2D-to-4D). It is demonstrated that when the gradient hydrogels prepared by photopolymerization possess dense polymer networks, the local regions with a high deformation rate can exhibit a low deformation degree. The resulting hydrogels can thus deform in a novel 2D-to-4D mode under external stimuli. During the deformation, they first transform into the temporary shapes induced by the local deformation rate difference, and then transform into the final shapes determined by the local deformation degree difference. Through controlling the ultraviolet irradiation direction and time to precisely program the local gradients of self-shaping hydrogels, they can be designed to produce various unprecedented yet controllable 2D-to-4D shape evolutions on demand, such as transformable origami, sequential gesture actions in finger-guessing games, mobile octopuses, time switch, etc.


Asunto(s)
Hidrogeles , Polímeros
4.
Soft Matter ; 18(19): 3748-3755, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35506704

RESUMEN

Self-wrinkling hydrogels enable various engineering and biomedical applications. The major challenge is to couple the self-wrinkling technologies and enhancement strategies, so as to get rid of the poor mechanical properties of existing self-wrinkling gels. Herein we present a facile diffusion-complexation strategy for constructing strong and ultratough self-wrinkling polyelectrolyte hydrogels with programmable wrinkled structures and customizable 3D configurations. Driven by the diffusion of low-molecular-weight chitosan polycations into the polyanion hydrogels, the high-modulus polyelectrolyte complexation shells can form directly on the hydrogel surface. Meanwhile, the polyanion hydrogels deswell/shrink due to the low osmotic pressure, which applies an isotropous surface compressive stress for inducing the formation of polygonal wrinkled structures. When the diffusion-complexation reaction occurs on a pre-stretched hydrogel sheet, the long-range ordered wrinkled structures can form during the springback/recovery of the hydrogel matrix. Moreover, through controlling the regions of diffusion-complexation reaction on the pre-stretched hydrogels, they can be spontaneously transformed into various 3D configurations with ordered wrinkled structures. Notably, because of the introduction of plenty of electrostatic binding (i.e., sacrificial bonds), the as-prepared self-wrinkling gels possess outstanding mechanical properties, far superior to the reported ones. This diffusion-complexation strategy paves the way for the on-demand design of high-performance self-wrinkling hydrogels.


Asunto(s)
Quitosano , Envejecimiento de la Piel , Hidrogeles/química , Polielectrolitos
5.
Angew Chem Int Ed Engl ; 60(37): 20294-20300, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34265152

RESUMEN

Emerging asymmetric ionic membranes consisting of two different porous membranes show great superiority in harvesting clean and renewable osmotic energy. The main barriers constraining their applications are incompatible interfaces and a low interfacial ionic transport efficiency, which are detrimental to the long-term stability and improvement of the power density. Here, continuous-gradient all-polysaccharide polyelectrolyte hydrogel membranes prepared by ultrafast reaction/diffusion have been demonstrated to enable high-performance osmotic energy conversion. Besides an inherent high ion conductivity and excellent ion selectivity, the anti-swelling polyelectrolyte gradient membranes preserve the ionic diode effect of the asymmetric membranes to facilitate one-way ion diffusion but circumvent adverse interfacial effects. In consequence, they can present ultrahigh power densities of 7.87 W m-2 by mixing seawater and river water, far superior to state-of-the-art membranes.

6.
Angew Chem Int Ed Engl ; 58(36): 12667-12673, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31243877

RESUMEN

It is a textbook knowledge that protein photoluminescence stems from the three aromatic amino acid residues of tryptophan(Trp), tyrosine (Tyr), and phenylalanine (Phe), with predominant contributions from Trp. Recently, inspired by the intrinsic emission of nonaromatic amino acids and poly(amino acids) in concentrated solutions and solids, we revisited protein light emission using bovine serum albumin (BSA) as a model. BSA is virtually nonemissive in dilute solutions (≤0.1 mg mL-1 ), but highly luminescent upon concentration or aggregation, showing unique concentration-enhanced emission and aggregation-induced emission (AIE) characteristics. Notably, apart from well-documented UV luminescence, bright blue emission is clearly observed. Furthermore, persistent room-temperature phosphorescence (p-RTP) is achieved even in the amorphous solids under ambient conditions. This visible emission can be rationalized by the clustering-triggered emission (CTE) mechanism. These findings not only provide an in-depth understanding of the emissive properties of proteins, but also hold strong implications for further elucidating the basis of tissue autofluorescence.

7.
Chembiochem ; 19(7): 654-659, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29334175

RESUMEN

2,5-Furandicarboxylic acid (FDCA) is a bio-based platform chemical for the production of polyethylene furanoate (PEF) and other valuable furanic chemicals. A magnetic laccase catalyst with (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) as the mediator has the remarkable capability of oxidizing 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). Under optimal reaction conditions, a quantitative yield (90.2 %) of FDCA with complete HMF conversion was obtained after 96 h of reaction. More importantly, the magnetic laccase catalyst exhibited good recyclability and stability, maintaining 84.8 % of its original activity following six reuse cycles. This is the first report on the efficient catalytic oxidation of HMF to FDCA by using an immobilized enzyme catalyst.


Asunto(s)
Ácidos Dicarboxílicos/síntesis química , Enzimas Inmovilizadas/química , Furaldehído/análogos & derivados , Furanos/síntesis química , Lacasa/química , Nanopartículas de Magnetita/química , Biocatálisis , Óxidos N-Cíclicos/química , Furaldehído/química , Tecnología Química Verde/métodos , Oxidación-Reducción , Dióxido de Silicio/química
8.
Biomacromolecules ; 19(6): 2014-2022, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29558794

RESUMEN

Nonconventional biomacromolecular luminogens have attracted extensive interest due to their fundamental importance and potential applications in diverse areas. To explore novel luminogens and, moreover, to gain deeper insights into their emission mechanism, we study the emission behaviors of sodium alginate (SA), a natural anionic polysaccharide composed of mannuronic (M) and guluronic acids (G). We find that the luminescence from aqueous SA solutions exhibits distinct concentration enhanced emission and aggregation-induced emission (AIE) characteristics. Meanwhile, the ratio of M/G also matters. Rheological measurements reveal the distinct regimes of the solutions, which are consistent with the observed emission, indicative of strong association between the chain entanglement and emission. Moreover, we observe persistent room temperature phosphorescence (RTP) in the amorphous SA solids, which is a rare case even in pure organic aromatic luminogens. Such unique emission can be remarkably enhanced via coordination with Ca2+ ions. These emission behaviors can be well rationalized by the clustering-triggered emission (CTE) mechanism. Namely, the emission is caused by the electron cloud overlap due to the clustering of oxygen atoms and carboxylate units, together with conformation rigidification. Owing to its biocompatibility, intrinsic emission, and, moreover, persistent RTP, SA shows great potential for anticounterfeiting, encryption, intracellular imaging, and so on.


Asunto(s)
Alginatos/química , Calcio/química , Células HeLa , Ácidos Hexurónicos/química , Humanos , Luminiscencia , Microscopía Confocal , Oxígeno/química , Reología , Soluciones/química , Temperatura , Rayos Ultravioleta
9.
J Colloid Interface Sci ; 657: 853-857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091908

RESUMEN

Supramolecular self-assembly of low molecular weight molecules into various organic nanostructures has attracted considerable research interest. However, preparing organic nanostructures through a top-down method, such as the disassembly of one large structure into many smaller nanoscale nanostructures, still remains a big challenge. Here, we make use of anti-solvent method to regulate the hierarchical self-assembly of an achiral C3-symmetric molecule in THF/water to prepare various nanostructures, including spherical structures, nanofibers, nanoribbons and nanotwists. Interestingly, the spherical structures could disassemble into nanohelices through good solvent dilution, providing a nanoscale top-down method to prepare organic nanostructures.

10.
ACS Appl Mater Interfaces ; 16(19): 25462-25472, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700267

RESUMEN

The construction of surface microstructures (e.g., micropyramids and wrinkles) has been proven as the most effective means to boost the sensitivity of ionic skins (I-skins). However, the single-scale micronano patterns constructed by the common fabrication strategy generally lead to a limited pressure-response range. Here, a convenient repeated stretching/coordinating/releasing strategy is developed to controllably construct multiple graded wrinkles on the polyelectrolyte hydrogel-based I-skins for increasing their sensitivity over a broad pressure range. We find that the small wrinkles allow for high sensitivity yet small pressure detection range, while the large wrinkles can reduce structural stiffening to generate large pressure-response range but incur limited sensitivity. The multiple graded wrinkles can combine the merits of both the small and large wrinkles to simultaneously improve the sensitivity and broaden the pressure-response range. In particular, the sensing performance of multiple-wrinkle-based I-skins substantially outperforms the superposition of the sensing performance of different single-wrinkle-based I-skins. As a proof of concept, the triple-wrinkle-based I-skins can provide an extremely high sensitivity of 17,309 kPa-1 and an ultrawide pressure detection range of 0.38 Pa to 372 kPa. The approach and insight contribute to the future development of I-skins with a broader pressure-response range and higher sensitivity.

11.
ACS Appl Mater Interfaces ; 15(46): 54018-54026, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37957821

RESUMEN

The integration of photonic crystals and self-shaping actuators is a promising method for constructing powerful biomimetic color-changing actuators. The major barrier is that common photonic crystals generally block the transfer/orientation of monomers/fillers and hence hinder the formation of heterogeneous structures for programmed 3D deformations as well as degrade the deformation capacity and mechanical properties of actuators. Herein, we present the construction of complex and strong 3D color-changing hydrogel actuators by asymmetric photolithography based on soft, permeable photonic crystals. The soft permeable photonic crystals are assembled by hydrogel microspheres with an ultralow volume fraction. During the asymmetric photolithography, the monomers in precursor solutions can thus transfer freely to generate heterogeneous microstructures, spatially patterned internal stresses, and interpenetrating networks for programming the deformation trajectories and initial 3D configurations and enhancing mechanical properties of actuators. Various 3D color-changing hydrogel actuators (e.g., flower and scroll painting) are constructed for applications such as information encryption and display.

12.
ACS Nano ; 17(17): 17245-17253, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37638530

RESUMEN

Conducting target ions rapidly while rejecting rival ions efficiently is challenging yet highly demanded for ion separation related applications. Two-dimensional (2D) channels are widely used for ion separation, but highly selective 2D channels generally suffer from a relatively low ionic conductivity. Here we report that the 2D vermiculite channels have a Na+ conductivity higher than bulk and at the same time reject heavy metal ions with a selectivity of a few hundreds. Such performance is attributed to the highly electronegative crystal surface and the extremely narrow channel (0.2 nm high), as also supported by the ab initio molecular dynamics simulation. We demonstrate that the highly selective and conductive sodium channels can be utilized to harvest osmotic power from industrial wastewater, achieving a power density of more than 20 W m-2 while preventing pollution from waste heavy metal ions. This work provides a strategy for wastewater utilization as well as treatment. Moreover, the investigation suggests the possibility to break the ionic permeability-selectivity trade-off by combining Ångstrom-scale confinement with proper surface engineering, which could lead to applications that are challenging for previous materials.

13.
Water Res ; 242: 120285, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413750

RESUMEN

Nanofluidic membranes have shown great promise in harvesting osmotic power. Yet, previous studies extensively focused on osmotic energy released by the mixing of seawater and river water, while there exist many other osmotic energy sources, such as the mixing of wastewater with other water. However, harvesting the osmotic power of wastewater is highly challenging because it requires the membranes to have environmental remediation capabilities to avoid pollution and biofouling, which has not been satisfied by previous nanofluidic materials. In this work, we demonstrate that a Janus carbon nitride membrane can be used for simultaneous power generation and water purification. The Janus structure of the membrane generates asymmetric band structure and therefore a built-in electric field, facilitating electron-hole separation. As a result, the membrane shows strong photocatalytic capability, which efficiently degrades organic pollutants and kills microorganisms. In particular, the built-in electric field also facilitates ionic transport, significantly promoting the osmotic power density up to 30 W/m2 under simulated sunlight illumination. The power generation performance can be robustly kept with or without the presence of pollutants. This study will shed light on the development of multi-functional power generation materials for the comprehensive utilization of industrial wastewater as well as domestic sewage.


Asunto(s)
Nitrilos , Aguas Residuales , Agua , Aguas del Alcantarillado
14.
ACS Nano ; 17(24): 25269-25278, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38071658

RESUMEN

The mixing of wastewater and natural water releases abundant osmotic energy. Harvesting this energy could significantly reduce the energy and economic cost of water treatment, leading to sustainable wastewater treatment technology. Yet, such energy harvesting is highly challenging because it requires a material that is highly permeable to nontoxic ions while rejecting toxic ions in wastewater to reach high power density and prevent environmental pollution. In this work, we demonstrate that a light-augmented biomimetic multi-ion interaction in an MXene membrane can simultaneously realize high permeability of Na+ ions for enhanced osmotic power generation and high selectivity to heavy metal ions up to a ratio of 2050 for wastewater treatment. The Na+ permeability is enhanced by the photothermal effect of the MXene membrane. The transport of heavy metal ions, however, is suppressed because, under angstrom-confinement, heavy metal ions are strongly electrostatically repelled by the increased number of permeating Na+ ions. As a result, the membrane can stably generate osmotic power from simulated industrial wastewater, and the power density can be enhanced by 4 times under light illumination of approximate 1 sun intensity. This work highlights the importance of multi-ion interaction for the transport properties of ionic materials, which remains rarely investigated and poorly understood in previous studies.

15.
Langmuir ; 28(1): 153-60, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22107261

RESUMEN

Double hydrophilic brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) (PEO-g-PDMAEMA) was successfully prepared via atom transfer radical polymerization (ATRP). We investigated the pH/thermoresponsive behaviors of PEO-g-PDMAEMA brush-shaped copolymer concentrated aqueous solutions by rheology. The observed LCST strongly decreased with increasing pH of the solutions, which was lower than that of linear block copolymer for different pH, indicating rapid thermoresponsiveness of the brush PDMAEMA chains. An unexpected shear thickening behavior was observed and could be tuned by the pH, resulting from the mobile nature and tractive force of the densely grafted hydrophobic chains of PDMAEMA at high pH. Self-assembly of the brush copolymer in a different pH and ionic strength environment was studied by transmission electron microscopy. A wormlike cylinder structure was formed at low pH. Fractals were observed for the brush copolymer aqueous solution in the presence of NaCl. The results showed that by adjusting the pH and NaCl concentration of the dispersions fractal aggregates with different topology were obtained. The observations reported here can supply a better understanding of the molecular self-assembling nature and be used to develop responsive materials with better performance.

16.
ACS Nano ; 16(3): 4714-4725, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35188364

RESUMEN

Human skin is the largest organ, and it can transform multiple external stimuli into the biopotential signals by virtue of ions as information carriers. Ionic skins (i-skins) that can mimic human skin have been extensively explored; however, the limited sensing capacities as well as the need of an extra power supply significantly restrict their broad applications. Herein, we develop self-powered humanlike i-skins based on gradient polyelectrolyte membranes (GPMs) that can directly and accurately perceive multiple stimuli. Prepared by a hydrogel-assisted reaction-diffusion method, the GPMs exhibit gradient-distributed charged groups across polymer networks, enabling one to generate a thickness-dependent and thermoresponsive self-induced potential in a hydrated situation and in a humidity-sensitive self-induced potential in a dehydrated/dried situation, respectively. Consequently, the GPM-based i-skins can precisely detect pressure, temperature, and humidity in a self-powered manner. The coupling of mechano-electric and thermo-electric effects inherent in GPMs provides a general strategy for developing innovative self-powered ion-based perception systems.


Asunto(s)
Hidrogeles , Piel , Electricidad , Humanos , Iones , Polielectrolitos
17.
ACS Appl Mater Interfaces ; 14(15): 17968-17974, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35394739

RESUMEN

While actuating liquid with external stimuli on open surfaces has been extensively studied, the actuation in tubes or channels is much more challenging due to the lower accessibility and higher complexity in material/device design, despite its crucial importance for microfluidic applications. Of various potential actuation methods, optical ones are particularly interesting because they can be remotely controlled with high spatial/temporal resolution. Yet, previous optical methods relied on the physical deformation of tubes, raising the concern of material fatigue and compromising reliability. Here we develop a low temperature photothermal method to actuate various liquids including water and oil in a tube. The tube has Janus configuration, with the upper part allowing light transmission and lower part imparted with high photothermal property. Combining with experiments and calculation, we show that the photothermal effect induces a wettability gradient to drive the liquid transport. Compared with the methods based on physical deformation, our method is more robust and can repeatedly function for at least 20 times. Thanks to the slippery surface, the actuation can be initiated at a moderate temperature of ∼40 °C, mitigating the risk of biomolecule degradation. We therefore expect our work to pave the way toward practical biomedical microfluidic applications.

18.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501705

RESUMEN

The skin, as the largest organ of human body, can use ions as information carriers to convert multiple external stimuli into biological potential signals. So far, artificial skin that can imitate the functionality of human skin has been extensively investigated. However, the demand for additional power, non-reusability and serious damage to the skin greatly limits applications. Here, we have developed a self-powered gradient hydrogel which has high temperature-triggered adhesion and room temperature-triggered easy separation characteristics. The self-powered gradient hydrogels are polymerized using 2-(dimethylamino) ethyl metharcylate (DMAEMA) and N-isopropylacrylamide (NIPAM) under unilateral UV irradiation. The prepared hydrogels achieve good adhesion at high temperature and detachment at a low temperature. In addition, according to the thickness-dependent potential of the gradient hydrogel, the hydrogels can also sense pressure changes. This strategy can inspire the design and manufacture of self-powered gradient hydrogel sensors, contributing to the development of complex intelligent artificial skin sensing systems in the future.

19.
Water Res ; 219: 118598, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597223

RESUMEN

Controlling water transport is central to a wide range of water-related energy and environment issues. In particular, enhancing the water permeation is highly demanded for practical membrane applications such as water treatment. In this work, we demonstrate that the water permeation through the laminar and electrically conductive MXene membrane can be facilely modulated with electric field. By applying a negative voltage of a few volts on the membrane, the water permeation rate was enhanced by 70 times. Density functional theory calculations and experimental characterizations suggest that the enhancement arises from the enhanced water/MXene interaction under electric field, which manifests itself as enhanced hydrophilicity of the MXene nanosheets. Along with the facilitated water permeation, the rejection rate to dyes of the membrane was kept at a relatively high level, which was 93.1% to Congo red and 94.8% to aniline blue under an applied voltage of -3 V, showing the potential for dye separation and water purification. Considering that there has been increasing interest in utilizing MXene for separations and water treatment, this work should inspire a range of future works in the related area to improve the membrane performance with external stimuli.

20.
Front Bioeng Biotechnol ; 10: 876157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837544

RESUMEN

Percutaneous endoscopic lumbar discectomy has been widely used in clinical practice for lumbar spine diseases. But the postoperative disc re-herniation and inflammation are the main reason for pain recurrence after surgery. The postoperative local defect of the intervertebral disc will lead to the instability of the spine, further aggravating the process of intervertebral disc degeneration. In this work, we successfully synthesized the thermosensitive injectable celecoxib-loaded chitosan hydrogel and investigated its material properties, repair effect, biocompatibility, and histocompatibility in in vitro and in vivo study. In vitro and in vivo, the hydrogel has low toxicity, biodegradability, and good biocompatibility. In an animal experiment, this composite hydrogel can effectively fill local tissue defects to maintain the stability of the spine and delay the process of intervertebral disc degeneration after surgery. These results indicated that this composite hydrogel will be a promising way to treat postoperative intervertebral disc disease in future clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA