Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Xray Sci Technol ; 32(3): 611-622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607727

RESUMEN

BACKGROUND: Accurate diagnosis and subsequent delineated treatment planning require the experience of clinicians in the handling of their case numbers. However, applying deep learning in image processing is useful in creating tools that promise faster high-quality diagnoses, but the accuracy and precision of 3-D image processing from 2-D data may be limited by factors such as superposition of organs, distortion and magnification, and detection of new pathologies. The purpose of this research is to use radiomics and deep learning to develop a tool for lung cancer diagnosis. METHODS: This study applies radiomics and deep learning in the diagnosis of lung cancer to help clinicians accurately analyze the images and thereby provide the appropriate treatment planning. 86 patients were recruited from Bach Mai Hospital, and 1012 patients were collected from an open-source database. First, deep learning has been applied in the process of segmentation by U-NET and cancer classification via the use of the DenseNet model. Second, the radiomics were applied for measuring and calculating diameter, surface area, and volume. Finally, the hardware also was designed by connecting between Arduino Nano and MFRC522 module for reading data from the tag. In addition, the displayed interface was created on a web platform using Python through Streamlit. RESULTS: The applied segmentation model yielded a validation loss of 0.498, a train loss of 0.27, a cancer classification validation loss of 0.78, and a training accuracy of 0.98. The outcomes of the diagnostic capabilities of lung cancer (recognition and classification of lung cancer from chest CT scans) were quite successful. CONCLUSIONS: The model provided means for storing and updating patients' data directly on the interface which allowed the results to be readily available for the health care providers. The developed system will improve clinical communication and information exchange. Moreover, it can manage efforts by generating correlated and coherent summaries of cancer diagnoses.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Pulmón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
2.
J Radiol Prot ; 43(3)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37406624

RESUMEN

This study aims to introduce national diagnostic reference levels (NDRLs) for adult hybrid single photon emission computed tomography (SPECT-CT) in nuclear medicine (NM) departments in the Kingdom of Saudi Arabia. The administered activity (AA) of radiopharmaceuticals, volume-weighted computed tomography dose index (CTDIvol) and dose length product (DLP) for ten hybrid SPECT/CT examinations were collected and analysed for one year. The median of AA, CTDIvoland DLP for each dose quantity was derived and the suggested national DRLs were determined based on the 75thpercentile for all identified SPECT-CT examinations. A comparison of the defined adult NDRLs in Saudi Arabia with the published data of other countries was performed. Although there are no significant variations of the proposed NDRL of AA between countries, the proposed NDRLs of the integrated CT metrics exceed the published data in most procedures. NM departments are urged to consider optimisation for both image quality and radiation protection.


Asunto(s)
Niveles de Referencia para Diagnóstico , Tomografía Computarizada de Emisión de Fotón Único , Adulto , Humanos , Dosis de Radiación , Arabia Saudita , Tomografía Computarizada por Rayos X/métodos , Valores de Referencia
3.
Molecules ; 25(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992942

RESUMEN

The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant values were extracted from the absorbance spectra of thin layers of the respective samples. The potential utilization of the materials as the active sensing materials of surface plasmon resonance biosensors has also been assessed in terms of the estimated value of the penetration depth through a dielectric medium. The results show a reasonable dependence of the optical constant parameters on the solvent type. Higher real part refractive index (n) and real part complex dielectric permittivity (ε') values were observed for the samples prepared using PTSA solution, while higher optical conductivity values were observed for the NMP-based samples due to their relatively higher imaginary part refractive index (k) and imaginary part complex dielectric permittivity (ε″) values. In addition, NMP-based samples show improvement in terms of the penetration depth through a dielectric medium by around 9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for the PANI, PANI-chitosan, PANI-RGO and the ternary composites, respectively. Based on these, it is concluded that preparation of these materials using different dispersion solvents could produce materials of different optical properties. Thus, the variation of the dispersion solvent will allow the flexible utilization of the PANI and the composites for diverse applications.


Asunto(s)
Compuestos de Anilina/química , Bencenosulfonatos/química , Pirrolidinonas/química
4.
Pol J Radiol ; 82: 603-606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29662592

RESUMEN

BACKGROUND: Radiation exposure due to computed tomography (CT) has become an important issue, as the number of CT examinations has been increasing worldwide. Radiation doses associated with CT are higher in comparison to other imaging procedures. CT-related radiation doses should be monitored and controlled in order to ensure reduction of radiation exposure and optimization of image quality. The aim of this study was to evaluate radiation doses in adult patient who underwent routine CT brain examinations, and to assess how CT scanning protocols affect patient doses in practice. MATERIAL/METHODS: A total of 118 patients underwent brain CT at two radiology departments equipped with 64-slice CT scanners, Khartoum, Sudan. Patient doses regarding weighted CT dose index (CTDIw) and dose length product (DLP) values were recorded. Quality control tests were performed for both scanners. RESULTS: The mean CTDIw values ranged from 62.9 to 65.8 mGy, DLP values ranged from 1003.7 to 1192.5 mGy, and the effective dose varied from 2.4 to 3.7 mSv. CONCLUSIONS: Patient doses in this study was higher compared to previous research, suggesting that patients exposed to unnecessary radiation. Therefore, optimization of radiation doses with the use of specified imaging protocols, well-documented indications for CT, training of technicians, and quality control programs will reduce the necessary radiation doses. Establishment of the diagnostic reference level is recommended for further dose reduction.

6.
Pol J Radiol ; 80: 131-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806099

RESUMEN

BACKGROUND: High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. MATERIAL/METHODS: Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. RESULTS: HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. CONCLUSIONS: HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period.

7.
Pol J Radiol ; 79: 384-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25371765

RESUMEN

BACKGROUND: High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. MATERIAL/METHODS: An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. RESULTS: In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. CONCLUSIONS: Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids.

8.
Appl Radiat Isot ; 212: 111440, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018816

RESUMEN

The sensitivity to ionizing radiation is increasing by age of development for some malignant tumors. Therefore, children have higher risk to radiation induced tumors due the high cellular rate of proliferation and long lifespan probability. The risk is also increase with increase the effective and organ doses. Computed tomography (CT) exposed pediatric patients to higher radiation dose during multiphase image acquisition, repeated exams, for follow-up procedures. This research intended to estimate the radiogenic risks and effective radiation doses resulted from CT enhanced contrast for abdomen and pelvis. 126 (66 (62.3%) males, 60 (47.7%) females) pediatric patients underwent CT enhanced abdominal examination at Medical Imaging Department at King Khalid Hospital and Prince Sultan Center for Health Services, Alkharj, Saudi Arabia. The average and range of pediatric age (years) is 11.6 ± 5.0 (0.1-17). The mean, standard deviation, and range of the volume CT air kerma index (CVOL (mGy) and the air kerma length product (PKL, mGy.cm) were 9.8 ± 9.4 (2.1-45.8) and 1795 (221-3150) per abdominopelvic procedure, respectively. The mean and range of the effective dose (mSv) per procedure are 26.9 (2.4-59.1). The effective dose is higher compared to the most previously published studies. The effective dose per pediatric abdomen and pelvis with contrast procedure suggest that the patient dose is not optimized yet. Because the chest and pelvis region contain sensitive organs that are irradiated repeatedly, dose optimization is crucial.

9.
Radiol Case Rep ; 19(7): 2724-2728, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38680741

RESUMEN

Vein of Galen malformation (VGM) is a rare congenital, uncommon intracerebral vascular anomaly rarely complicated with the development of brain abscess as secondary to primary infection or after endovascular treatment. We report a very rare finding of a vein of Galen aneurysm associated with a large brain abscess at the time of diagnosis. A 12-year-old boy with a high-grade fever, severe headache, and recurrent episodes of convulsions came into the radiology department of Kassala Advanced Diagnostic Center. On a Siemens 16-slice scanner, brain non-contrast enhanced computed tomography (NECT) and contrast enhanced CT (CECT) was used to determine the source of the acute headache and convulsions which revealed a right frontal peripherally enhancing cystic lesion measuring 5.7 × 4.7 × 5.3 cm2 surrounded by massive vasogenic edema causing mass effect with midline shift to the left side by 1.5 cm suggestive of brain abscess. There is evidence of another avidly enhancing lesion seen within the third ventricle continuous with a straight sinus surrounded by extensive vascular loops consistent with an aneurysm of the vein of Galen, it was causing compression of the cerebral aqueduct with upstream mild hydrocephalus with dilated both lateral ventricles. Late presentation, diagnosis, and treatment also lead to an increase in the morbidities and mortalities of such case conditions. Urgent intervention should be considered for better outcomes.

10.
Chemosphere ; 351: 141218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266876

RESUMEN

The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.


Asunto(s)
Grafito , Nanopartículas del Metal , Compuestos de Nitrógeno , Óxidos , Humanos , Sulfonamidas , Aguas Residuales , Sulfanilamida , Preparaciones Farmacéuticas , Catálisis
11.
Life (Basel) ; 13(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109522

RESUMEN

Chest computed tomography (CT) plays a vital role in the early diagnosis, treatment, and follow-up of COVID-19 pneumonia during the pandemic. However, this raises concerns about excessive exposure to ionizing radiation. This study aimed to survey radiation doses in low-dose chest CT (LDCT) and ultra-low-dose chest CT (ULD) protocols used for imaging COVID-19 pneumonia relative to standard CT (STD) protocols so that the best possible practice and dose reduction techniques could be recommended. A total of 564 articles were identified by searching major scientific databases, including ISI Web of Science, Scopus, and PubMed. After evaluating the content and applying the inclusion criteria to technical factors and radiation dose metrics relevant to the LDCT protocols used for imaging COVID-19 patients, data from ten articles were extracted and analyzed. Technique factors that affect the application of LDCT and ULD are discussed, including tube current (mA), peak tube voltage (kVp), pitch factor, and iterative reconstruction (IR) algorithms. The CTDIvol values for the STD, LDCT, and ULD chest CT protocols ranged from 2.79-13.2 mGy, 0.90-4.40 mGy, and 0.20-0.28 mGy, respectively. The effective dose (ED) values for STD, LDCT, and ULD chest CT protocols ranged from 1.66-6.60 mSv, 0.50-0.80 mGy, and 0.39-0.64 mSv, respectively. Compared with the standard (STD), LDCT reduced the dose reduction by a factor of 2-4, whereas ULD reduced the dose reduction by a factor of 8-13. These dose reductions were achieved by applying scan parameters and techniques such as iterative reconstructions, ultra-long pitches, and fast spectral shaping with a tin filter. Using LDCT, the cumulative radiation dose of serial CT examinations during the acute period of COVID-19 may have been inferior or equivalent to that of conventional CT.

12.
Appl Radiat Isot ; 202: 111071, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871398

RESUMEN

Due to the extended localized fluoroscopy, many radiographic exposures, and multiple procedures that might result in tissue reaction, patients and personnel received a significant radiation dose during interventional cardiology (IR) procedures. This study aims to calculate the radiation risk and assess patient and staff effective doses during IC procedures. Thirty-two patients underwent a Cath lab treatment in total. Ten Cath lab personnel, including six nurses, two cardiologists, and two X-ray technologists. Optical stimulating-luminescent dosimeters (OSL) (Al2O3:C) calibrated for this purpose were used to monitor both occupational and ambient doses. Using an automated OSL reader, these badges were scanned. The Air Kerma (mGy) and Kerma Area Products (KAP, mGy.cm2) have a mean and standard deviation (SD) of 371 ± 132 and 26052, respectively. The average personal dose equivalent (mSv) and its range for cardiologists, nurses and X ray technologists were 1.11 ± 0.21 (0.96-1.26), 0.84 ± 0.11 (0.68-1.16), and 0.68 ± 0.014 (0.12-0.13), respectively. The current study findings showed that the annual effective dose for cardiologists, nurses, and X-ray technologists was lesser than the yearly occupational dose limit of 20 mSv recommended by national and international guidelines. The patients' doses are comparable with some previously published studies and below the tissue reaction limits.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Humanos , Dosis de Radiación , Exposición Profesional/análisis , Radiografía , Fluoroscopía/efectos adversos , Fluoroscopía/métodos , Exposición a la Radiación/efectos adversos , Medición de Riesgo
13.
ACS Omega ; 8(21): 18591-18602, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273611

RESUMEN

Efforts to produce microwave absorber materials that are inexpensive and environmentally friendly have become a means of greening the environment. The breakthrough can be focused on industrial waste and natural materials for functional purposes and how to enhance their performance. We successfully synthesized nickel slag/laterite soil (NS/LS) and nickel slag/iron sand (NS/IS) nanocomposites using a simple mechanical alloying technique, and the electromagnetic (EM) wave absorption capacities of the nanocomposites were measured using a vector network analyzer. The structural properties of the nanocomposites were analyzed by X-ray diffraction spectroscopy, where the results of the analysis showed that NS/IS has the largest crystallite size (15.69 nm) and the highest EM wave absorption performance. The optical properties of the nanocomposites were determined from their Fourier transform infrared spectra using the Kramers-Kronig relation. As determined through a quantitative analysis of the optical properties, the distance between the longitudinal and transversal optical phonon wavenumber positions (Δ(LO - TO) = 65 cm-1) is inversely proportional to the reflection loss. The surface morphologies of the nanocomposites were analyzed by scanning electron microscopy, and the particle diameters were observed by binary image and Gaussian distribution analyses. The nanocomposite surface exhibits a graded-like morphology, which indicates multiple reflections of the EM radiation, consequently reducing the EM interference. The best nanocomposite for an attenuated EM wave achieved a reflection loss of -39.14 dB at 5-8 GHz. A low penetration depth has implications for the electrical charge tuning of the storage and composite magnets. Finally, the EM absorption properties of NS/IS and NS/LS indicate a 2-mm-thick environmentally friendly nanocomposite for EM absorption.

14.
Appl Radiat Isot ; 193: 110626, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640699

RESUMEN

Breast cancer is a common malignancy for females (25% of female cancers) and also has low incidence in males. It was estimated that 1% of all breast malignancies occur in males with mortality rate about 20%, with annual increase in incidence. Risk factors include age, family history, exposure to ionizing radiation and high estrogen and low of androgens hormones level. Diagnosis and screening are challenging due to limiting effectiveness of breast cancer screening. Therefore, patients may expose to ionizing radiation that may contribute in breast cancer incidence in males. In literature, limited studies were published regarding radiation exposure for males during mammography. The objective of this research is to quantify patient doses during male mammogram and to estimate the projected radiogenic risk during the procedure. In total, 42 male patients were undergone mammogram for breast cancer diagnosis during two consecutive years. The mean and range of patient age (years) is 45 (23-80). The mean and standard deviation (SD) of the peak tube potential and tube current time product are 28.64 ± 2. and 149 ± 35.1, respectively. The mean, and range of patients' entrance surface air kerma (ESAK, mGy) per single breast procedure was 5.3 (0.47-27.5). Male patient's received comparable radiation dose per mammogram compared to female procedures. With increasing incidence of male breast cancer, proper guidelines are necessary for the mammographic procedure are necessary to reduce unnecessary radiation doses and radiogenic risk.


Asunto(s)
Neoplasias de la Mama , Exposición a la Radiación , Humanos , Femenino , Masculino , Dosis de Radiación , Mamografía/métodos , Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Exposición a la Radiación/análisis
15.
Appl Radiat Isot ; 193: 110648, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36669265

RESUMEN

Occupational radiation exposure can occur due to various human activities, including the use of radiation in medicine. Occupationally exposed personnel surpassing 7.4 millions, and respresent the biggest single group of employees who are exposed to artificial radiation sources at work. This study compares the occupational radiation dose levels for 145 workers in four different hospitals located in the Aseer region in Saudi Arabia. The occupational exposure was quantified using thermoluminescence dosimeters (TLD-100). The levels of annual occupational exposures in targeted hospitals were calculated and compared with the levels of the international atomic energy agency (IAEA) Safety Standards. An average yearly cumulative dose for the two consecutive years. The average, highest and lowest resulted occupational doses under examination in this work is 1.42, 3.9 mSv and 0.72 for workers in various diagnostic radiology procedures. The resulted annual effective dose were within the IAEA approved yearly dose limit for occupational exposure of workers over 18, which is 20 mSv. Staff should be monitored on a regular basis, according to current practice, because their annual exposure may surpass 15% of the annual effective doses.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Traumatismos por Radiación , Monitoreo de Radiación , Humanos , Monitoreo de Radiación/métodos , Dosis de Radiación , Radiografía , Exposición Profesional/análisis
16.
Front Pharmacol ; 14: 1218867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601050

RESUMEN

The field of cancer nanotheranostics is rapidly evolving, with cyclodextrin (CD)-based nanoparticles emerging as a promising tool. CDs, serving as nanocarriers, have higher adaptability and demonstrate immense potential in delivering powerful anti-cancer drugs, leading to promising and specific therapeutic outcomes for combating various types of cancer. The unique characteristics of CDs, combined with innovative nanocomplex creation techniques such as encapsulation, enable the development of potential theranostic treatments. The review here focuses mainly on the different techniques administered for effective nanotheranostics applications of CD-associated complex compounds in the domain of cancer treatments. The experimentations on various loaded drugs and their complex conjugates with CDs prove effective in in vivo results. Various cancers can have potential nanotheranostics cures using CDs as nanoparticles along with a highly efficient process of nanocomplex development and a drug delivery system. In conclusion, nanotheranostics holds immense potential for targeted drug delivery and improved therapeutic outcomes, offering a promising avenue for revolutionizing cancer treatments through continuous research and innovative approaches.

17.
Radiat Prot Dosimetry ; 199(18): 2174-2178, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37934995

RESUMEN

Present study concerns the radiological character of Malaysian honey. A total of 18 samples (representative of the various most common types) were obtained from various honey bee farms throughout the country. Using a high-purity germanium γ-ray spectroscopic system, the samples were analysed for the naturally occurring radionuclides 226Ra, 228Ra and 40K. The respective range of activities (in Bq/kg) was: 3.49 ± 0.35 to 4.51 ± 0.39, 0.99 ± 0.37 to 1.74 ± 0.39 and 41.37 ± 3.26 to 105.02 ± 6.91. The estimated associated committed effective doses were derived from prevailing data on national consumption of honey, the annual dose being found low compared with the UNSCEAR reference dose limit of 290 µSv y-1. The estimated threshold consumption rate for honey indicates a maximum intake of 339 g/d, which poses an insignificant radiological risk to public health; however, the total dietary exposure may not, the guidance level of 290 µSv y-1 being applicable to dietary intake of all foodstuffs. The study is in support of the cultivation of a healthy lifestyle, acknowledging prevailing radioactivity within the environment.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Animales , Radio (Elemento)/análisis , Radioisótopos de Potasio/análisis , Monitoreo de Radiación/métodos , Malasia , Dosis de Radiación , Torio/análisis
18.
Heliyon ; 9(11): e22451, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034673

RESUMEN

Assessment of activity levels of radionuclides that exist in soil, granite, and charnockite rock samples is very crucial because it exhibits an enhanced elemental concentration of uranium (U) and thorium (Th) contributing higher natural background activity than usual in the environment and it may cause health risk to human health through the external and internal exposure. This study determined the radioactivity levels of 238U, 232Th, and 40K radionuclides in soil, granite, and charnockite rock samples collected from selected fields in Ekiti State, Nigeria using Caesium iodide CsI(Tl) scintillation gamma spectrometer. It also evaluated indices of the radiological parameters consisting of radium equivalent activity (Raeq), absorbed dose rate (DR), annual effective dose equivalent (AEDE), internal hazard index (Hin), and excess lifetime cancer risk (ELCR). The calculated average activity concentrations of 238U, 232Th, and 40K are 30.40 ± 0.71 Bq kg-1, 3.31 ± 0.05 Bq kg-1, and 222.25 ± 14.72 Bq kg-1, respectively, which were lower than their respective world average values. Comparatively, potassium concentrations in these collected samples have a higher value than concentrations of uranium and thorium (40K > 238U > 232Th). All the evaluated values of the radiological parameters (except DR) of the appraised radionuclides were below the global permissible limits. The granite rocks, charnockite rocks, and soils from Ekiti State in Nigeria do not pose any hazardous risk to humans, but continued monitoring is necessary when these materials are used as building materials, which cause long-term radiation exposure.

19.
Brain Sci ; 13(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36979267

RESUMEN

Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.

20.
Saudi J Biol Sci ; 29(4): 2180-2186, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531247

RESUMEN

Introduction: Medical images are usually affected by biological and physical artifacts or noise, which reduces image quality and hence poses difficulties in visual analysis, interpretation and thus requires higher doses and increased radiographs repetition rate. Objectives: This study aims at assessing image quality during CT abdomen and brain examinations using filtering techniques as well as estimating the radiogenic risk associated with CT abdomen and brain examinations. Materials and Methods: The data were collected from the Radiology Department at Royal Care International (RCI) Hospital, Khartoum, Sudan. The study included 100 abdominal CT images and 100 brain CT images selected from adult patients. Filters applied are namely: Mean filter, Gaussian filter, Median filter and Minimum filter. In this study, image quality after denoising is measured based on the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and the Structural Similarity Index Metric (SSIM). Results: The results show that the images quality parameters become higher after applications of filters. Median filter showed improved image quality as interpreted by the measured parameters: PSNR and SSIM, and it is thus considered as a better filter for removing the noise from all other applied filters. Discussion: The noise removed by the different filters applied to the CT images resulted in enhancing high quality images thereby effectively revealing the important details of the images without increasing the patients' risks from higher doses. Conclusions: Filtering and image reconstruction techniques not only reduce the dose and thus the radiation risks, but also enhances high quality imaging which allows better diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA