Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 29(10): 3042-3058, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34332145

RESUMEN

Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes-Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)-together with three reprogramming-helper genes-dominant-negative (DN)-TGFß, DN-Wnt8a, and acid ceramidase (AC)-to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.


Asunto(s)
Reprogramación Celular/genética , Terapia Genética/métodos , Isquemia/terapia , Músculo Esquelético/irrigación sanguínea , Infarto del Miocardio/terapia , Neovascularización Fisiológica/genética , Regeneración/genética , Transfección/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética
2.
Circulation ; 141(11): 916-930, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31992066

RESUMEN

BACKGROUND: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. METHODS: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. RESULTS: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. CONCLUSIONS: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.


Asunto(s)
Ceramidasa Ácida/fisiología , Terapia Genética , Hipoxia/metabolismo , Infarto del Miocardio/metabolismo , ARN Mensajero/uso terapéutico , Esfingolípidos/metabolismo , Ceramidasa Ácida/antagonistas & inhibidores , Ceramidasa Ácida/genética , Animales , Animales Recién Nacidos , Apoptosis , Ceramidas/metabolismo , Cicatriz/patología , Cuerpos Embrioides , Inducción Enzimática , Femenino , Humanos , Hipoxia/etiología , Hipoxia/patología , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación , Masculino , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Transfección , Regulación hacia Arriba
3.
J Biol Chem ; 293(24): 9162-9175, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29735531

RESUMEN

Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.


Asunto(s)
Desarrollo Óseo , Condrocitos/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteína Smad4/genética , Animales , Diferenciación Celular , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Proteína Smad4/metabolismo
4.
Circulation ; 138(25): 2919-2930, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566018

RESUMEN

BACKGROUND: For more than a decade, Sca-1+ cells within the mouse heart have been widely recognized as a stem cell population with multipotency that can give rise to cardiomyocytes, endothelial cells, and smooth muscle cells in vitro and after cardiac grafting. However, the developmental origin and authentic nature of these cells remain elusive. METHODS: Here, we used a series of high-fidelity genetic mouse models to characterize the identity and regenerative potential of cardiac resident Sca-1+ cells. RESULTS: With these novel genetic tools, we found that Sca-1 does not label cardiac precursor cells during early embryonic heart formation. Postnatal cardiac resident Sca-1+ cells are in fact a pure endothelial cell population. They retain endothelial properties and exhibit minimal cardiomyogenic potential during development, normal aging and upon ischemic injury. CONCLUSIONS: Our study provides definitive insights into the nature of cardiac resident Sca-1+ cells. The observations challenge the current dogma that cardiac resident Sca-1+ cells are intrinsic stem cells for myocardial development, renewal, and repair, and suggest that the mechanisms of transplanted Sca-1+ cells in heart repair need to be reassessed.


Asunto(s)
Células Madre Adultas/fisiología , Antígenos Ly/metabolismo , Células Endoteliales/fisiología , Corazón/embriología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/fisiología , Animales , Antígenos Ly/genética , Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células , Células Cultivadas , Desarrollo Embrionario , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Modelos Animales , Regeneración , Trasplante de Células Madre , Cicatrización de Heridas
5.
Circulation ; 135(1): 59-72, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27803039

RESUMEN

BACKGROUND: Epicardial adipose tissue volume and coronary artery disease are strongly associated, even after accounting for overall body mass. Despite its pathophysiological significance, the origin and paracrine signaling pathways that regulate epicardial adipose tissue's formation and expansion are unclear. METHODS: We used a novel modified mRNA-based screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the adult heart. RESULTS: Using 2 independent lineage-tracing strategies in murine models, we show that cells originating from the Wt1+ mesothelial lineage, which includes epicardial cells, differentiate into epicardial adipose tissue after myocardial infarction. This differentiation process required Wt1 expression in this lineage and was stimulated by insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R inhibition within this lineage significantly reduced its adipogenic differentiation in the context of exogenous, IGF1-modified mRNA stimulation. Moreover, IGF1R inhibition significantly reduced Wt1 lineage cell differentiation into adipocytes after myocardial infarction. CONCLUSIONS: Our results establish IGF1R signaling as a key pathway that governs epicardial adipose tissue formation in the context of myocardial injury by redirecting the fate of Wt1+ lineage cells. Our study also demonstrates the power of modified mRNA -based paracrine factor library screening to dissect signaling pathways that govern progenitor cell activity in homeostasis and disease.


Asunto(s)
Adipocitos/metabolismo , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/patología , Pericardio/citología , Receptor IGF Tipo 1/metabolismo , Adipocitos/citología , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Comunicación Paracrina , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor IGF Tipo 1/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas WT1
6.
Mol Ther ; 25(6): 1306-1315, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28389322

RESUMEN

Modified mRNA (modRNA) is a new technology in the field of somatic gene transfer that has been used for the delivery of genes into different tissues, including the heart. Our group and others have shown that modRNAs injected into the heart are robustly translated into the encoded protein and can potentially improve outcome in heart injury models. However, the optimal compositions of the modRNA and the reagents necessary to achieve optimal expression in the heart have not been characterized yet. In this study, our aim was to elucidate those parameters by testing different nucleotide modifications, modRNA doses, and transfection reagents both in vitro and in vivo in cardiac cells and tissue. Our results indicate that optimal cardiac delivery of modRNA is with N1-Methylpseudouridine-5'-Triphosphate nucleotide modification and achieved using 0.013 µg modRNA/mm2/500 cardiomyocytes (CMs) transfected with positively charged transfection reagent in vitro and 100 µg/mouse heart (1.6 µg modRNA/µL in 60 µL total) sucrose-citrate buffer in vivo. We have optimized the conditions for cardiac delivery of modRNA in vitro and in vivo. Using the described methods and conditions may allow for successful gene delivery using modRNA in various models of cardiovascular disease.


Asunto(s)
Técnicas de Transferencia de Gen , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Animales , Biomarcadores , Células Cultivadas , Femenino , Expresión Génica , Genes Reporteros , Humanos , Masculino , Ratones , Imagen Molecular , Biosíntesis de Proteínas , ARN Mensajero/química , Ratas , Transfección
7.
J Mol Cell Cardiol ; 97: 278-85, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27266388

RESUMEN

Definitively identifying the cell type of newly generated cells in the heart and defining their origins are central questions in cardiac regenerative medicine. Currently, it is challenging to ascertain the myocardial identity and to track myocardial progeny during heart development and disease due to lack of proper genetic tools. This may lead to many misinterpretations of the findings in cardiac regenerative biology. In this study, we developed a set of novel mouse models by inserting double reporter genes nlacZ/H2B-GFP, mGFP/H2B-mCherry into the start codon of Tnnt2 and Myh6. nlacZ (nuclear lacZ) and mGFP (membrane GFP) are flanked by two LoxP sites in these animals. We found that the reporter genes faithfully recapitulated Tnnt2 and Myh6 cardiac expression from embryonic stage and adulthood. The reporter mice provide unprecedented robustness and fidelity for visualizing and tracing cardiomyocytes with nuclear or cell membrane localization signals. These animal models offer superior genetic tools to meet a critical need in studies of heart development, cardiac stem cell biology and cardiac regenerative medicine.


Asunto(s)
Marcadores Genéticos , Miocitos Cardíacos/metabolismo , Fenotipo , Animales , Linaje de la Célula/genética , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Masculino , Ratones , Ratones Transgénicos , Miocardio , Cadenas Pesadas de Miosina/genética , Especificidad de Órganos/genética , Proteínas Recombinantes de Fusión , Regeneración , Medicina Regenerativa , Troponina T/genética
8.
Development ; 140(15): 3176-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824573

RESUMEN

Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, valve elongation and remodeling. Currently, little is known about the coordination of the diverse signals that regulate endocardial cushion development and valve elongation. Here, we report that the T-box transcription factor Tbx20 is expressed in the developing endocardial cushions and valves throughout heart development. Ablation of Tbx20 in endocardial cells causes severe valve elongation defects and impaired cardiac function in mice. Our study reveals that endocardial Tbx20 is crucial for valve endocardial cell proliferation and extracellular matrix development, but is not required for initiation of EMT. Elimination of Tbx20 also causes aberrant Wnt/ß-catenin signaling in the endocardial cushions. In addition, Tbx20 regulates Lef1, a key transcriptional mediator for Wnt/ß-catenin signaling, in this developmental process. Our study suggests a model in which Tbx20 regulates the Wnt pathway to direct endocardial cushion maturation and valve elongation, and provides new insights into the etiology of valve defects in humans.


Asunto(s)
Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Organogénesis , Embarazo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Vía de Señalización Wnt , beta Catenina/metabolismo
9.
Genesis ; 53(6): 377-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26010701

RESUMEN

Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Miocardio/metabolismo , Tamoxifeno/farmacología , Troponina T/genética , Actinas/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Corazón/embriología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Inmunohistoquímica , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones Transgénicos , Modelos Animales , Músculo Liso/química , Miocardio/citología , Miocitos Cardíacos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN no Traducido/genética , Factores de Tiempo , Troponina T/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
10.
Dev Biol ; 390(1): 68-79, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613616

RESUMEN

The vertebrate heart develops from mesoderm and requires inductive signals secreted from early endoderm. During embryogenesis, Nkx2.5 acts as a key transcription factor and plays essential roles for heart formation from Drosophila to human. In mice, Nkx2.5 is expressed in the early first heart field, second heart field pharyngeal mesoderm, as well as pharyngeal endodermal cells underlying the second heart field. Currently, the specific requirements for Nkx2.5 in the endoderm versus mesoderm with regard to early heart formation are incompletely understood. Here, we performed tissue-specific deletion in mice to dissect the roles of Nkx2.5 in the pharyngeal endoderm and mesoderm. We found that heart development appeared normal after endodermal deletion of Nkx2.5 whereas mesodermal deletion engendered cardiac defects almost identical to those observed on Nkx2.5 null embryos (Nkx2.5(-/-)). Furthermore, re-expression of Nkx2.5 in the mesoderm rescued Nkx2.5(-/-) heart defects. Our findings reveal that Nkx2.5 in the mesoderm is essential while endodermal expression is dispensable for early heart formation in mammals.


Asunto(s)
Corazón/embriología , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Miocardio/metabolismo , Factores de Transcripción/genética , Animales , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Endodermo/embriología , Endodermo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Mesodermo/embriología , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Faringe/embriología , Faringe/metabolismo , Embarazo , Factores de Tiempo , Factores de Transcripción/metabolismo
11.
J Calif Dent Assoc ; 42(3): 165-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25080722

RESUMEN

Tacrolimus is an immunosuppressive property approved for the treatment of atopic dermatitis. Studies have shown that topical tacrolimus is effective for a broad spectrum of mucocutaneous diseases, including oral lichen planus. The objective of this article is to review the pharmacology of tacrolimus, its usage in oral lichen planus, adverse effects and advantages of tacrolimus over other conventional drugs, thus making it a popular and alternative drug for the treatment of lichen planus.


Asunto(s)
Inmunosupresores/administración & dosificación , Liquen Plano Oral/tratamiento farmacológico , Tacrolimus/administración & dosificación , Administración Tópica , Carcinógenos , Humanos , Inmunosupresores/efectos adversos , Tacrolimus/efectos adversos
12.
Transgenic Res ; 22(3): 659-66, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23117587

RESUMEN

Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.


Asunto(s)
Ratones Transgénicos , Timo/citología , Timo/embriología , Animales , Biomarcadores/metabolismo , Endodermo/citología , Endodermo/embriología , Femenino , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Cresta Neural/metabolismo , Conejos , Ratas , Proteínas de Dominio T Box/genética
13.
Diagnostics (Basel) ; 13(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37296738

RESUMEN

COVID-19, continually developing and raising increasingly significant issues, has impacted human health and caused countless deaths. It is an infectious disease with a high incidence and mortality rate. The spread of the disease is also a significant threat to human health, especially in the developing world. This study suggests a method called shuffle shepherd optimization-based generalized deep convolutional fuzzy network (SSO-GDCFN) to diagnose the COVID-19 disease state, types, and recovered categories. The results show that the accuracy of the proposed method is as high as 99.99%; similarly, precision is 99.98%; sensitivity/recall is 100%; specificity is 95%; kappa is 0.965%; AUC is 0.88%; and MSE is less than 0.07% as well as 25 s. Moreover, the performance of the suggested method has been confirmed by comparison of the simulation results from the proposed approach with those from several traditional techniques. The experimental findings demonstrate strong performance and high accuracy for categorizing COVID-19 stages with minimal reclassifications over the conventional methods.

14.
Biochem Biophys Res Commun ; 417(1): 601-6, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22182413

RESUMEN

The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with ∼50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteína de Retinoblastoma/metabolismo , Animales , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , Ratas , Proteínas Represoras/genética , Proteína de Retinoblastoma/genética , Regulación hacia Arriba
15.
Mol Metab ; 66: 101618, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283677

RESUMEN

OBJECTIVES: Insulin treatment remains the sole effective intervention for Type 1 Diabetes. Here, we investigated the therapeutic potential of converting intestinal epithelial cells to insulin-producing, glucose-responsive ß-like cells by targeted inhibition of FOXO1. We have previously shown that this can be achieved by genetic ablation in gut Neurogenin3 progenitors, adenoviral or shRNA-mediated inhibition in human gut organoids, and chemical inhibition in Akita mice, a model of insulin-deficient diabetes. METHODS: We profiled two novel FOXO1 inhibitors in reporter gene assays, and hepatocyte gene expression studies, and in vivo pyruvate tolerance test (PTT) for their activity and specificity. We evaluated their glucose-lowering effect in mice rendered insulin-deficient by administration of streptozotocin. RESULTS: We provide evidence that two novel FOXO1 inhibitors, FBT432 and FBT374 have glucose-lowering and gut ß-like cell-inducing properties in mice. FBT432 is also highly effective in combination with a Notch inhibitor in this model. CONCLUSION: The data add to a growing body of evidence suggesting that FOXO1 inhibition be pursued as an alternative treatment to insulin administration in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Animales , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/antagonistas & inhibidores , Glucosa/metabolismo , Insulina/metabolismo , Estreptozocina
16.
Mol Metab ; 66: 101624, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341906

RESUMEN

OBJECTIVE: Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive ß-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate ß-like gut cells. METHODS: We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS: Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced ß-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced ß-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive ß-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION: These results provide proof of principle of gut cell conversion into ß-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Animales , Ratones , Células Enteroendocrinas , Proteína Forkhead Box O1/genética , Glucosa/farmacología , Insulina/genética , Organoides , Receptores Notch/antagonistas & inhibidores
17.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36282594

RESUMEN

As a highly regenerative organ, the intestine is a promising source for cellular reprogramming for replacing lost pancreatic ß cells in diabetes. Gut enterochromaffin cells can be converted to insulin-producing cells by forkhead box O1 (FoxO1) ablation, but their numbers are limited. In this study, we report that insulin-immunoreactive cells with Paneth/goblet cell features are present in human fetal intestine. Accordingly, lineage-tracing experiments show that, upon genetic or pharmacologic FoxO1 ablation, the Paneth/goblet lineage can also undergo conversion to the insulin lineage. We designed a screening platform in gut organoids to accurately quantitate ß-like cell reprogramming and fine-tune a combination treatment to increase the efficiency of the conversion process in mice and human adult intestinal organoids. We identified a triple blockade of FOXO1, Notch, and TGF-ß that, when tested in insulin-deficient streptozotocin (STZ) or NOD diabetic animals, resulted in near normalization of glucose levels, associated with the generation of intestinal insulin-producing cells. The findings illustrate a therapeutic approach for replacing insulin treatment in diabetes.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Ratones , Animales , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Ratones Endogámicos NOD , Insulina/genética
18.
Genesis ; 49(1): 2-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21254332

RESUMEN

Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development.


Asunto(s)
Proteínas de Homeodominio/genética , Tendones/embriología , Animales , Tipificación del Cuerpo/genética , Ratones , Ratones Noqueados , Desarrollo Musculoesquelético/genética , Sistema Musculoesquelético/anatomía & histología , Sistema Musculoesquelético/embriología , Recombinación Genética , Proteínas Represoras/genética
19.
Methods Mol Biol ; 2158: 281-294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32857381

RESUMEN

Modified mRNA (modRNA) is a promising new gene therapy approach that has safely and effectively delivered genes into different tissues, including the heart. Current efforts to use DNA-based or viral gene therapy to induce cardiac regeneration postmyocardial infarction (MI) or in heart failure (HF) have encountered key challenges, e.g., genome integration and delayed and noncontrolled expression. By contrast, modRNA is a transient, safe, non-immunogenic, and controlled gene delivery method that is not integrated into the genome. For most therapeutic applications, especially in regenerative medicine, the ability to deliver genes to the heart transiently and with control is vital for achieving therapeutic effect. Additionally, modRNA synthesis is comparatively simple and inexpensive compared to other gene delivery methods (e.g., protein), though a simple, clear in vitro transcription (IVT) protocol for synthesizing modRNA is needed for it to be more widely used. Here, we describe a simple and improved step-by-step IVT protocol to synthesize modRNA for in vitro or in vivo applications.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Infarto del Miocardio/terapia , Miocardio/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/química , Medicina Regenerativa , Transcripción Genética , Animales , Ratones , Infarto del Miocardio/genética , ARN Mensajero/genética
20.
Adv Sci (Weinh) ; 8(10): 2004661, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026458

RESUMEN

Heart failure (HF) remains a major cause of morbidity and mortality worldwide. One of the risk factors for HF is cardiac hypertrophy (CH), which is frequently accompanied by cardiac fibrosis (CF). CH and CF are controlled by master regulators mTORC1 and TGF-ß, respectively. Type-2-phosphatidylinositol-5-phosphate-4-kinase-gamma (Pip4k2c) is a known mTORC1 regulator. It is shown that Pip4k2c is significantly downregulated in the hearts of CH and HF patients as compared to non-injured hearts. The role of Pip4k2c in the heart during development and disease is unknown. It is shown that deleting Pip4k2c does not affect normal embryonic cardiac development; however, three weeks after TAC, adult Pip4k2c-/- mice has higher rates of CH, CF, and sudden death than wild-type mice. In a gain-of-function study using a TAC mouse model, Pip4k2c is transiently upregulated using a modified mRNA (modRNA) gene delivery platform, which significantly improve heart function, reverse CH and CF, and lead to increased survival. Mechanistically, it is shown that Pip4k2c inhibits TGFß1 via its N-terminal motif, Pip5k1α, phospho-AKT 1/2/3, and phospho-Smad3. In sum, loss-and-gain-of-function studies in a TAC mouse model are used to identify Pip4k2c as a potential therapeutic target for CF, CH, and HF, for which modRNA is a highly translatable gene therapy approach.


Asunto(s)
Cardiomegalia/complicaciones , Fibrosis/prevención & control , Insuficiencia Cardíaca/prevención & control , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , ARN Mensajero/genética , Adulto , Anciano , Animales , Reprogramación Celular , Modelos Animales de Enfermedad , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Fosfotransferasas (Aceptor de Grupo Alcohol)/administración & dosificación , ARN Mensajero/administración & dosificación , Transducción de Señal , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA