Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(2): 929-938, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34737458

RESUMEN

Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Dominio T Box , Animales , Cognición , Variaciones en el Número de Copia de ADN/genética , Heterocigoto , Ratones , Oligodendroglía , Proteínas de Dominio T Box/genética
2.
Eur Radiol ; 33(7): 5028-5036, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36719498

RESUMEN

OBJECTIVES: To establish a CT lymphangiography method in mice via direct lymph node puncture. METHODS: We injected healthy mice (n = 8) with 50 µl of water-soluble iodine contrast agent (iomeprol; iodine concentration, 350 mg/mL) subcutaneously into the left-rear foot pad (interstitial injection) and 20 µl of the same contrast agent directly into the popliteal lymph node (direct puncture) 2 days later. Additionally, we performed interstitial MR lymphangiography on eight mice as a control group. We calculated the contrast ratio for each lymph node and visually assessed the depiction of lymph nodes and lymphatic vessels on a three-point scale. RESULTS: The contrast ratios of 2-min post-injection images of sacral and lumbar-aortic lymph nodes were 20.7 ± 16.6 (average ± standard deviation) and 17.1 ± 12.0 in the direct puncture group, which were significantly higher than those detected in the CT or MR interstitial lymphangiography groups (average, 1.8-3.6; p = 0.008-0.019). The visual assessment scores for sacral lymph nodes, lumbar-aortic lymph nodes, and cisterna chyli were significantly better in the direct puncture group than in the CT interstitial injection group (p = 0.036, 0.009 and 0.001, respectively). The lymphatic vessels between these structures were significantly better scored in direct puncture group than in the CT or MR interstitial lymphangiography groups at 2 min after injection (all p ≤ 0.05). CONCLUSIONS: In CT lymphangiography in mice, the direct lymph node puncture provides a better delineation of the lymphatic pathways than the CT/MR interstitial injection method. KEY POINTS: • The contrast ratios of 2-min post-injection images in the direct CT lymphangiography group were significantly higher than those of CT/MR interstitial lymphangiography groups. • The visibility of lymphatic vessels in subjective analysis in the direct CT lymphangiography group was significantly better in the direct puncture group than in the CT/MR interstitial lymphangiography groups. • CT lymphangiography with direct lymph node puncture can provide excellent lymphatic delineation with contrast being maximum at 2 min after injection.


Asunto(s)
Yodo , Linfografía , Animales , Ratones , Linfografía/métodos , Medios de Contraste/farmacología , Estudios de Factibilidad , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Tomografía Computarizada por Rayos X
3.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176145

RESUMEN

Our study proposes a pharmacological strategy to target cancerous mitochondria via redox-cycling "mitocans" such as quinone/ascorbate (Q/A) redox-pairs, which makes cancer cells fragile and sensitive without adverse effects on normal cells and tissues. Eleven Q/A redox-pairs were tested on cultured cells and cancer-bearing mice. The following parameters were analyzed: cell proliferation/viability, mitochondrial superoxide, steady-state ATP, tissue redox-state, tumor-associated NADH oxidase (tNOX) expression, tumor growth, and survival. Q/A redox-pairs containing unprenylated quinones exhibited strong dose-dependent antiproliferative and cytotoxic effects on cancer cells, accompanied by overproduction of mitochondrial superoxide and accelerated ATP depletion. In normal cells, the same redox-pairs did not significantly affect the viability and energy homeostasis, but induced mild mitochondrial oxidative stress, which is well tolerated. Benzoquinone/ascorbate redox-pairs were more effective than naphthoquinone/ascorbate, with coenzyme Q0/ascorbate exhibiting the most pronounced anticancer effects in vitro and in vivo. Targeted anticancer effects of Q/A redox-pairs and their tolerance to normal cells and tissues are attributed to: (i) downregulation of quinone prenylation in cancer, leading to increased mitochondrial production of semiquinone and, consequently, superoxide; (ii) specific and accelerated redox-cycling of unprenylated quinones and ascorbate mainly in the impaired cancerous mitochondria due to their redox imbalance; and (iii) downregulation of tNOX.


Asunto(s)
Neoplasias , Superóxidos , Ratones , Animales , Superóxidos/metabolismo , Oxidación-Reducción , Ácido Ascórbico/metabolismo , Quinonas/metabolismo , Neoplasias/metabolismo , Adenosina Trifosfato/metabolismo
4.
Brain Topogr ; 32(4): 599-624, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-27026168

RESUMEN

The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Animales , Encéfalo/fisiología , Encefalopatías , Electrodos , Humanos , Imagen por Resonancia Magnética , Masculino , Ratas , Cuero Cabelludo
5.
Cereb Cortex ; 28(3): 924-935, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108494

RESUMEN

Network analyses of structural connectivity in the brain have highlighted a set of highly connected hubs that are densely interconnected, forming a "rich-club" substrate in diverse species. Here, we demonstrate the existence of rich-club organization in functional brain networks of rats. Densely interconnected rich-club regions are found to be distributed in multiple brain modules, with the majority located within the putative default mode network. Rich-club members exhibit high wiring cost (as measured by connection distance) and high metabolic running cost (as surrogated by cerebral blood flow), which may have evolved to achieve high network communications to support efficient brain functions. Furthermore, by adopting a forepaw electrical stimulation paradigm, we find that the rich-club organization of the rat functional network remains almost the same as in the resting state, whereas path motif analysis reveals significant differences, suggesting the rat brain reorganizes its topological routes by increasing locally oriented shortcuts but reducing rich-club member-involved paths to conserve metabolic running cost during unimodal stimulation. Together, our results suggest that the neuronal system is organized and dynamically operated in an economic way to balance between cost minimization and topological/functional efficiency.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Animales , Encéfalo/diagnóstico por imagen , Estimulación Eléctrica , Miembro Anterior/inervación , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Oxígeno/sangre , Ratas , Ratas Sprague-Dawley
6.
Acta Neurochir (Wien) ; 159(5): 939-946, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28247160

RESUMEN

BACKGROUND: Convection-enhanced delivery (CED) is a technique allowing local infusion of therapeutic agents into the central nervous system, circumventing the blood-brain or spinal cord barrier. OBJECTIVE: To evaluate the utility of nimustine hydrochloride (ACNU) CED in controlling tumor progression in an experimental spinal cord glioma model. METHODS: Toxicity studies were performed in 42 rats following the administration of 4 µl of ACNU CED into the mid-thoracic spinal cord at concentrations ranging from 0.1 to 10 mg/ml. Behavioral analyses and histological evaluations were performed to assess ACNU toxicity in the spinal cord. A survival study was performed in 32 rats following the implantation of 9 L cells into the T8 spinal cord. Seven days after the implantation, rats were assigned to four groups: ACNU CED (0.25 mg/ml; n = 8); ACNU intravenous (i.v.) (0.4 mg; n = 8); saline CED (n = 8); saline i.v. (n = 8). Hind limb movements were evaluated daily in all rats for 21 days. Tumor sizes were measured histologically. RESULTS: The maximum tolerated ACNU concentration was 0.25 mg/ml. Preservation of hind limb motor function and tumor growth suppression was observed in the ACNU CED (0.25 mg/ml) and ACNU i.v. groups. Antitumor effects were more prominent in the ACNU CED group especially in behavioral analyses (P < 0.05; log-rank test). CONCLUSIONS: ACNU CED had efficacy in controlling tumor growth and preserving neurological function in an experimental spinal cord tumor model. ACNU CED can be a viable treatment option for spinal cord high-grade glioma.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Nimustina/administración & dosificación , Neoplasias de la Médula Espinal/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Convección , Masculino , Nimustina/uso terapéutico , Ratas , Ratas Endogámicas F344
7.
J Nanobiotechnology ; 14: 19, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26969152

RESUMEN

BACKGROUND: Apoptotic neuronal death is known as programmed cell death. Inhibition of this progression might contribute to a new treatment strategy. However, methods for in vivo detection of live apoptotic cells are in need to be developed and established. CONTEXT AND PURPOSE: The purpose of this study is to develop a new method for in vivo brain imaging for live apoptotic lesions using magnetic resonance imaging (MRI). We focused on the specific accumulation of our recently developed functional magnetic nanoparticles (FMNPs) into apoptotic cells using a rat cerebral ischemia model. Sulphorhodamine B, fluorescent dye was linked to valylalanylaspartic acid fluoromethyl ketone as a pan-caspase inhibitor to form SR-FLIVO. SR-FLIVO was bound with FMNPs to develop SR-FLIVO-FMNP probe. Ischemic rat brains were scanned by 7T MRI before and after intravenous injection of SR-FLIVO-FMNP and the distribution was evaluated by subtraction images of T2* colored mapping. SR-FLIVO, intracellular FMNPs, and T2* reduction area were histologically analyzed. The distribution of SR-FLIVO-FMNP was evaluated by subtracting the T2* signal images and was significantly correlated with the histological findings by TUNEL staining. RESULTS: Our experimental results revealed several findings where our newly developed probe SR-FLIVO-FMNP was intravenously administered into ischemic rats and FLIVO expression was tracked and found in apoptotic cells in rat brains after cerebral ischemia. A remarkable T2* reduction within the ischemic lesion was recorded using MRI based SR-FLIVO-FMNP probe as a contrasting agent due to the specific probe accumulation in apoptotic cells whereas, no observation of T2* reduction within the non-ischemic lesion due to no probe accumulation in non-apoptotic cells. Histological analysis based on the correlation between FLIVO and TUNEL staining showed that almost all FLIVO-positive cells were positive for TUNEL staining. These findings suggest the possibility for establishment of in vivo targeting delivery methods to live apoptotic cells based on conjugation of magnetic and fluorescent dual functional probes. CONCLUSION: A newly developed probe SR-FLIVO-FMNP might be considered as a useful probe for in vivo apoptotic detection, and FMNPs might be a strong platform for noninvasive imaging and targeting delivery.


Asunto(s)
Apoptosis/fisiología , Isquemia Encefálica/patología , Encéfalo/patología , Compuestos Férricos/administración & dosificación , Nanopartículas de Magnetita/administración & dosificación , Animales , Medios de Contraste/administración & dosificación , Imagen por Resonancia Magnética/métodos , Masculino , Ratas , Coloración y Etiquetado/métodos
8.
Neuroimage ; 105: 84-92, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25462699

RESUMEN

Heart failure (HF) is characterized by a blood supply which is insufficient to meet the body's demand. HF can potentially affect the brain and is associated with a high prevalence of depression. However, the mechanisms by which the two are related remain largely unclear. Structural abnormalities of the ventral hippocampus have been observed in depression but have never been reported in HF. In this study, we thus investigated structural brain abnormality in HF using voxel-based morphometry (VBM) and histological analysis in a rat model of HF. T2-weighted images were obtained in rats with HF (n = 20) and sham rats (n = 17) and VBM was used to produce gray matter concentration (GMC) maps. Twenty-four hour locomotor activity was used as a sign of depressive behavior. Brains of HF and sham rats (n = 8, each) were fixed and histologically analyzed for the measurement of neurogenesis, the number of astrocytes and neurite outgrowth in the ventral hippocampus. VBM demonstrated significant GMC decrease in the hippocampus, which was restricted to the ventral segment. Similarly, neurogenesis and neurite outgrowth were significantly decreased and the number of astrocytes was significantly increased in HF rats as compared with sham rats in the ventral hippocampus. GMC values in the ventral hippocampus were significantly and negatively correlated with 24 hour locomotor activity in HF rats. In conclusion, the present study has demonstrated for the first time that the structural abnormality of the ventral hippocampus is associated with depressive symptoms in HF rats.


Asunto(s)
Depresión/complicaciones , Depresión/patología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/psicología , Hipocampo/patología , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Wistar
9.
Neuroimage ; 98: 82-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24816532

RESUMEN

The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals.


Asunto(s)
Corteza Cerebral/fisiología , Sustancia Gris/fisiología , Actividad Motora , Animales , Corteza Cerebral/anatomía & histología , Sustancia Gris/anatomía & histología , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Wistar
10.
Cancer Sci ; 105(9): 1196-204, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981848

RESUMEN

Combretastatins interrupt blood flow of solid tumor vascular networks and lead to necrosis by blocking nutrients. However, tumors recover from tumor blood flow interruption-induced damage and develop viable rims. To investigate why cancer recurs and its prevention, we used a combretastatin derivative, Cderiv (=AC7700), and analyzed changes in tumor-host interface (T-HI) vessels, which were closest to cancer cells in the tumor margin after tumor vessel disruption, and the microenvironment surrounding them. Treatment with Cderiv (10 mg/kg) interrupted tumor blood flow in all regions of LY80 (a variant of Yoshida sarcoma) tumor, but not T-HI vessel blood flow. The same Cderiv dose given 72 h after 5 Gy irradiation stopped T-HI vessel blood flow and prevented cancer recurrence. Treatment in the reverse order, however, did not affect T-HI vessel blood flow. The greatest difference between the two treatments was the occurrence of gradual T-HI edema with the former. Severe T-HI edema compressed T-HI blood vessels, so that circulation stopped. Thus, the distance between a tumor margin and its nearest functioning host vessel became much larger, and the tumor marginal region became a microenvironment that lacked a nutritional supply. Cancer cells in tumor margins received nutrients through two circulation routes: tumor vessels and T-HI vessels. Our starvation methods, which involved treatment with Cderiv 72 h after 5 Gy irradiation, blocked both circulation routes and may have great potential as a clinical strategy to prevent cancer recurrence.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Bibencilos/farmacología , Recurrencia Local de Neoplasia/prevención & control , Sarcoma de Yoshida/terapia , Animales , Línea Celular Tumoral , Quimioradioterapia , Ensayos de Selección de Medicamentos Antitumorales , Edema/inducido químicamente , Edema/metabolismo , Masculino , Trasplante de Neoplasias , Ratas , Flujo Sanguíneo Regional/efectos de los fármacos , Sarcoma de Yoshida/irrigación sanguínea , Sarcoma de Yoshida/patología , Microambiente Tumoral/efectos de los fármacos
11.
Adv Sci (Weinh) ; 11(7): e2304171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030413

RESUMEN

Nano-sized contrast agents (NCAs) hold potential for highly specific tumor contrast enhancement during magnetic resonance imaging. Given the quantity of contrast agents loaded into a single nano-carrier and the anticipated relaxation effects, the current molecular design approaches its limits. In this study, a novel molecular mechanism to augment the relaxation of NCAs is introduced and demonstrated. NCA formation is driven by the intramolecular self-folding of a single polymer chain that possesses systematically arranged hydrophilic and hydrophobic segments in water. Utilizing this self-folding molecular design, the relaxivity value can be elevated with minimal loading of gadolinium complexes, enabling sharp tumor imaging. Furthermore, the study reveals that this NCA can selectively accumulate into tumor tissues, offering effective anti-tumor results through gadolinium neutron capture therapy. The efficacy and versatility of this self-folding molecular design underscore its promise for cancer diagnosis and treatment.


Asunto(s)
Portadores de Fármacos , Neoplasias , Humanos , Medios de Contraste/química , Gadolinio/química , Sustancias Macromoleculares , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
12.
Sci Adv ; 10(2): eadk4741, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198539

RESUMEN

Adult neurogenesis confers the hippocampus with unparalleled neural plasticity, essential for intricate cognitive functions. The specific influence of sparse newborn neurons (NBNs) in modulating neural activities and subsequently steering behavior, however, remains obscure. Using an engineered NBN-tetanus toxin mouse model (NBN-TeTX), we noninvasively silenced NBNs, elucidating their crucial role in impulse inhibition and cognitive flexibility as evidenced through Morris water maze reversal learning and Go/Nogo task in operant learning. Task-based functional MRI (tb-fMRI) paired with operant learning revealed dorsal hippocampal hyperactivation during the Nogo task in male NBN-TeTX mice, suggesting that hippocampal hyperexcitability might underlie the observed behavioral deficits. Additionally, resting-state fMRI (rs-fMRI) exhibited enhanced functional connectivity between the dorsal and ventral dentate gyrus following NBN silencing. Further investigations into the activities of PV+ interneurons and mossy cells highlighted the indispensability of NBNs in maintaining the hippocampal excitation/inhibition balance. Our findings emphasize that the neural plasticity driven by NBNs extensively modulates the hippocampus, sculpting inhibitory control and cognitive flexibility.


Asunto(s)
Cognición , Neuronas , Masculino , Animales , Ratones , Aprendizaje , Interneuronas , Transmisión Sináptica
13.
Neuroimage ; 77: 215-21, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23558096

RESUMEN

Cardiac arrest and subsequent cardiopulmonary resuscitation (CPR) induce hippocampal damage, which has been identified using histological analysis of post-mortem brains. Voxel-based morphometry (VBM), an in-vivo assessment of regional differences in the concentration or volume of a particular tissue such as gray matter, has revealed CPR-induced decreases in gray matter in the hippocampus, where histopathological findings were observed. However, the potential link between the changes in gray matter detected by VBM and hippocampal damage has not been investigated directly. In this study, we compared results obtained using VBM directly to results from histological analyses in the same CPR rat brains, which exhibited neuronal loss and microglial invasion in the CA1 region of the hippocampus (CA1). T2-weighted images were obtained and preprocessed for VBM to produce gray matter concentration (GMC) maps in rats with asphyxia-induced cardiac arrest and CPR and sham-operated controls (n=12 each). Brains were fixed, and the number of neurons and microglia in CA1 were counted. VBM revealed a significant decrease in GMC in CPR rats compared to sham-operated controls. The CPR-induced decrease in GMC was localized to CA1, which is the same brain region where neuronal loss and microglial invasion were noted in response to CPR. GMC values were positively correlated with the number of neurons and tended to be negatively correlated with the number of microglia in CA1 of CPR rats. In conclusion, these results indicate that VBM-detected alterations in gray matter can be used as a surrogate marker for hippocampal damage following CPR.


Asunto(s)
Región CA1 Hipocampal/patología , Reanimación Cardiopulmonar/efectos adversos , Paro Cardíaco/patología , Animales , Modelos Animales de Enfermedad , Paro Cardíaco/terapia , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley
14.
Redox Rep ; 28(1): 2220531, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37581329

RESUMEN

Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues.Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX).Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A.Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration.


Asunto(s)
Glioblastoma , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Ácido Ascórbico/farmacología , Oxidación-Reducción , Estrés Oxidativo
15.
Mol Imaging Biol ; 25(5): 968-976, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36653627

RESUMEN

PURPOSE: The development of magnetic resonance imaging (MRI) contrasting agents (CAs) that are safer and have a higher relaxivity than Gd(III)-based agents is a significant research topic. Herein, we propose the use of a Mn-based metal organic framework (MOF), Mn-MOF-74, characterized by a safe paramagnetic center, a coordinatively unsaturated site (CUS) for aquation, and a long rotational correlation time, endowing high relaxivity. Furthermore, biocompatibility and delivery to the tumor are generally expected for MOFs that are obtainable in the nanometer size range. PROCEDURE: Drop-wise mixing of 2,5-dihydroxyterephthalic acid (DHTP) and Mn(II) acetate yielded Mn-MOF-74 with a diameter of < 150 nm, which was then modified with 1-fivefold higher amounts of poly(ethylene glycol) (M.W. = 5000) to afford MOFs stably dispersed in water for at least 24 h. RESULTS: The longitudinal and transverse relaxivity of the PEG-modified MOF was in the range of r1 = 8.08-13.5 and r2 = 32.7-46.8 mM-1 s-1, respectively (1.0 T, 23.7-23.9 °C), being larger than those of typical Gd(III)- and Mn(II)-based CAs of single-nuclear metal complexes. The in vivo imaging of a tumor-bearing mouse clearly showed that the tumor could be readily recognized due to signal enhancement (117%) in T1-weighted images, whereas other tissues showed small signal changes. CONCLUSIONS: These results suggest that PEG-Mn-MOF-74 can be passively delivered to tumors and can act as a high-relaxivity T1 agent.

16.
Neuroscience ; 524: 21-36, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286161

RESUMEN

Allergic asthma is a common chronic inflammatory condition associated with psychiatric comorbidities. Notably depression, correlated with adverse outcomes in asthmatic patients. Peripheral inflammation's role in depression has been shown previously. However, evidence regarding the effects of allergic asthma on the medial prefrontal cortex (mPFC)-ventral hippocampus (vHipp) interactions, an important neurocircuitry in affective regulation, is yet to be demonstrated. Herein, we investigated the effects of allergen exposure in sensitized rats on the immunoreactivity of glial cells, depression-like behavior, brain regions volume, as well as activity and connectivity of the mPFC-vHipp circuit. We found that allergen-induced depressive-like behavior was associated with more activated microglia and astrocytes in mPFC and vHipp, as well as reduced hippocampus volume. Intriguingly, depressive-like behavior was negatively correlated with mPFC and hippocampus volumes in the allergen-exposed group. Moreover, mPFC and vHipp activity were altered in asthmatic animals. Allergen disrupted the strength and direction of functional connectivity in the mPFC-vHipp circuit so that, unlike normal conditions, mPFC causes and modulates vHipp activity. Our results provide new insight into the underlying mechanism of allergic inflammation-induced psychiatric disorders, aiming to develop new interventions and therapeutic approaches for improving asthma complications.


Asunto(s)
Asma , Depresión , Ratas , Animales , Masculino , Alérgenos , Hipocampo , Corteza Prefrontal , Inflamación
17.
bioRxiv ; 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37398198

RESUMEN

Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.

18.
Res Sq ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37461714

RESUMEN

Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.

19.
J Neurosci ; 31(41): 14639-53, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21994380

RESUMEN

Recent evidence indicates the existence of pyramidal cells (PCs) and interneurons with nontrivial tuning characteristics for sound attributes in the primary auditory cortex (A1) of mammals. These neurons are functionally distributed into layers and sparsely organized at a small scale. However, their topological locations at a large scale in A1 have not yet been investigated. Furthermore, these neurons are usually classified from fine maps of attribute-dependent spiking activity, and not much attention is paid to population postsynaptic potentials related to their activity. We used extracellular recordings obtained from multiple sites in A1 of adult rats to determine neuronal codifiers for sound attributes defined by coarse representations of the population dose-response curves. We demonstrated that these codifiers, majorly involving PCs, are heterogeneously distributed along A1. Spiking activity in these neurons during stimulation was correlated to ß (12-25 Hz) and low γ (25-70 Hz) postsynaptic oscillations in the infragranular layer, whereas in the supragranular layer, better correlations were found with high γ (70-170 Hz) oscillations. The time-frequency analysis of the postsynaptic potentials showed a transient broadband power increase in all layers after the stimulus onset that was followed by a sustained high γ oscillation in the supragranular layer, fluctuations in the laminar content of the low-frequency oscillations, and a global attenuation in the low-frequency powers after the stimulus offset that happened together with a long-lasting strengthening of the ß oscillations. We concluded that, for rats, sounds are codified in A1 by segregated networks of specialized PCs whose postsynaptic activity impinges on the emergence of sparse/dense spiking patterns.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Mapeo Encefálico , Dinámicas no Lineales , Células Receptoras Sensoriales/fisiología , Sonido , Estimulación Acústica/métodos , Animales , Corteza Auditiva/citología , Potenciales Evocados Auditivos/fisiología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Neuronas/clasificación , Neuronas/fisiología , Ratas , Ratas Wistar , Tiempo de Reacción/fisiología , Análisis de Regresión
20.
Neuroimage ; 60(1): 738-46, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22245345

RESUMEN

The simultaneous recordings of neuronal and hemodynamic signals have revealed a significant involvement of high frequency bands (e.g., gamma range, 25-70 Hz) in neurovascular coupling. However, the dependence on a physiological parameter is unknown. In this study, we performed simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings in 12 Wistar rats using a conventional forepaw stimulation paradigm and concurrently monitored the systemic physiological parameters of the partial pressure of arterial oxygen, partial pressure of arterial carbon dioxide, pH, mean arterial blood pressure, and heart rate through the rat femoral artery. The high frequency bands in the artifact-free EEG signals, especially those in the gamma range, demonstrated a maximum correlation with fMRI signals in the rat somatosensory cortex. A multiple linear regression analysis demonstrated that the correlation coefficient between the gamma power and fMRI signal depended on the actual values of the physiological parameters (R(2)=0.20, p<0.05), whereas the gamma power and fMRI signal by itself were independent. Among the parameters, the heart rate had a statistically significant slope (95% CI: 0.00027-0.0016, p<0.01) in a multiple linear regression model. These results indicate that neurovascular coupling is mainly driven by gamma oscillations, as expected, but coupling or potential decoupling is strongly influenced by systemic physiological parameters, which dynamically reflect the baseline vital status of the subject.


Asunto(s)
Electroencefalografía , Imagen por Resonancia Magnética , Corteza Somatosensorial/fisiología , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA