Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 40(24): 12407-12418, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848479

RESUMEN

Understanding the microscopic electronic structure determines the macroscopic properties of the materials. Sufficient sampling has the same foundational importance in understanding the interactions. The NO2/MoS2 interaction is well known, but there are still many inconsistencies in the basic data, and the source of the NO2 direct dissociation activity has not been revealed. Based on a large-scale sampling density functional theory (DFT) study, the optimal adsorption of the NO2/MoS2 monolayer system is determined. The impurity state on the top of the valence band of the S-vacancy monolayer (MoS2-VS) was determined by cross-analysis of the band structure and density of states, which has been neglected for a long time. This provides a reasonable explanation for the direct dissociation of NO2 on the MoX2 monolayers. Further atomic structure analysis reveals that the impurity state originates from the not-fully occupied valence orbitals. This also corroborates the fact that the Mo material has dissociation activity, while the W material does not. There is no impurity state on the top of the valence band of the X-vacancy WS2 and WSe2 monolayers. Interestingly, NO2 dissociation did not occur in the MoTe2-VTe monolayer. This may be related to the 6s inert electron pair effect of the Te atom. The double-oriented adsorption behavior of NO2is also revealed. In contrast to the MoSe2 and MoTe2 monolayers, NO2-oriented adsorption on the MoS2 perfect monolayer deviates obviously, which is speculated to be related to space limitation and larger electronegativity of the S atom. The oriented adsorption ability of the MoX2 monolayers followed the order MoTe2 (64.4%) > MoSe2 (44.8%) > MoS2 (42.7%), according to the directed proportion. Renewed insights into the adsorption basic data and the understanding of the electronic structure of NO2/MoX2 (X = S, Se, Te) monolayer systems provide a basic understanding of the gas-surface interactions and various future surface-related advanced applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA