Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 40(20): e1900329, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31482643

RESUMEN

A tough polyacrylic acid ionic gel is obtained using carboxymethyl cellulose as a crosslinker and KCl as a conductive ions donor. The polymerization process is initiated by ceric ammonium nitrate and triggered by visible light, which can be employed as a facile 3D printing process to fabricate arbitrary gel architectures. Curling macromolecular crosslinker and plentiful hydrogen bonds among polymers endow the ionic gel with superior mechanical performance including high tensile strength (≈1.33 MPa), large elongation (>8 times), high toughness (≈5.11 MJ m-3 ), and good self-recovery property. Importantly, the ionic gel can be assembled into a flexible strain sensor to precisely monitor the diverse human body motions in real time, that is, joints bending and muscle contraction, by recording the capacitance variation. This strain-sensitive performance, which can recover even after 1000 successive cycles, should enable the detection of body action and provide a potential application in health-care monitoring or human-computer user interfaces.


Asunto(s)
Resinas Acrílicas/química , Carboximetilcelulosa de Sodio/química , Reactivos de Enlaces Cruzados/química , Geles/química , Tinta , Iones
2.
Polymers (Basel) ; 12(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019708

RESUMEN

The engineering applications of hydrogels are generally limited by the common problem of their softness and brittlness. In this study, a composite double network ionic hydrogel (CDN-gel) was obtained by the facile visible light triggered polymerization of acrylic acid (AA), polyvinyl alcohol (PVA), and hydrolyzed triethoxyvinylsilane (TEVS) and subsequent salt impregnation. The resulting CDN-gels exhibited high toughness, recovery ability, and notch-insensitivity. The tensile strength, fracture elongation, Young's modulus, and toughness of the CDN-gels reached up to ~21 MPa, ~700%, ~3.5 MPa, and ~48 M/m3, respectively. The residual strain at a strain of 200% was only ~25% after stretch-release of 1000 cycles. These properties will enable greater application of these hydrogel materials, especially for the fatigue resistance of tough hydrogels, as well as broaden their applications in damping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA