Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Public Health ; 24(1): 1399, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796443

RESUMEN

BACKGROUND: Influenza is a highly contagious respiratory disease that presents a significant challenge to public health globally. Therefore, effective influenza prediction and prevention are crucial for the timely allocation of resources, the development of vaccine strategies, and the implementation of targeted public health interventions. METHOD: In this study, we utilized historical influenza case data from January 2013 to December 2021 in Fuzhou to develop four regression prediction models: SARIMA, Prophet, Holt-Winters, and XGBoost models. Their predicted performance was assessed by using influenza data from the period from January 2022 to December 2022 in Fuzhou. These models were used for fitting and prediction analysis. The evaluation metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), were employed to compare the performance of these models. RESULTS: The results indicate that the epidemic of influenza in Fuzhou exhibits a distinct seasonal and cyclical pattern. The influenza cases data displayed a noticeable upward trend and significant fluctuations. In our study, we employed SARIMA, Prophet, Holt-Winters, and XGBoost models to predict influenza outbreaks in Fuzhou. Among these models, the XGBoost model demonstrated the best performance on both the training and test sets, yielding the lowest values for MSE, RMSE, and MAE among the four models. CONCLUSION: The utilization of the XGBoost model significantly enhances the prediction accuracy of influenza in Fuzhou. This study makes a valuable contribution to the field of influenza prediction and provides substantial support for future influenza response efforts.


Asunto(s)
Brotes de Enfermedades , Predicción , Gripe Humana , Humanos , China/epidemiología , Gripe Humana/epidemiología , Modelos Estadísticos , Estaciones del Año
2.
Front Public Health ; 12: 1441240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39377003

RESUMEN

Background: Influenza is a respiratory infection that poses a significant health burden worldwide. Environmental indicators, such as air pollutants and meteorological factors, play a role in the onset and propagation of influenza. Accurate predictions of influenza incidence and understanding the factors influencing it are crucial for public health interventions. Our study aims to investigate the impact of various environmental indicators on influenza incidence and apply the ARIMAX model to integrate these exogenous variables to enhance the accuracy of influenza incidence predictions. Method: Descriptive statistics and time series analysis were employed to illustrate changes in influenza incidence, air pollutants, and meteorological indicators. Cross correlation function (CCF) was used to evaluate the correlation between environmental indicators and the influenza incidence. We used ARIMA and ARIMAX models to perform predictive analysis of influenza incidence. Results: From January 2014 to September 2023, a total of 21,573 cases of influenza were reported in Fuzhou, with a noticeable year-by-year increase in incidence. The peak of influenza typically occurred around January each year. The results of CCF analysis showed that all 10 environmental indicators had a significant impact on the incidence of influenza. The ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model exhibited the best prediction performance, as indicated by the lowest AIC, AICc, and BIC values, which were 529.740, 530.360, and 542.910, respectively. The model achieved a fitting RMSE of 2.999 and a predicting RMSE of 12.033. Conclusion: This study provides insights into the impact of environmental indicators on influenza incidence in Fuzhou. The ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model could provide a scientific basis for formulating influenza control policies and public health interventions. Timely prediction of influenza incidence is essential for effective epidemic control strategies and minimizing disease transmission risks.


Asunto(s)
Predicción , Gripe Humana , Humanos , Gripe Humana/epidemiología , Incidencia , China/epidemiología , Contaminantes Atmosféricos/análisis , Modelos Estadísticos
3.
Sci Rep ; 14(1): 4116, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374382

RESUMEN

Air pollution has become a significant concern for human health, and its impact on influenza, has been increasingly recognized. This study aims to explore the spatiotemporal heterogeneity of the impacts of air pollution on influenza and to confirm a better method for infectious disease surveillance. Spearman correlation coefficient was used to evaluate the correlation between air pollution and the influenza case counts. VIF was used to test for collinearity among selected air pollutants. OLS regression, GWR, and STWR models were fitted to explore the potential spatiotemporal relationship between air pollution and influenza. The R2, the RSS and the AICc were used to evaluate and compare the models. In addition, the DTW and K-medoids algorithms were applied to cluster the county-level time-series coefficients. Compared with the OLS regression and GWR models, STWR model exhibits superior fit especially when the influenza outbreak changes rapidly and is able to more accurately capture the changes in different regions and time periods. We discovered that identical air pollutant factors may yield contrasting impacts on influenza within the same period in different areas of Fuzhou. NO2 and PM10 showed opposite impacts on influenza in the eastern and western areas of Fuzhou during all periods. Additionally, our investigation revealed that the relationship between air pollutant factors and influenza may exhibit temporal variations in certain regions. From 2013 to 2019, the influence coefficient of O3 on influenza epidemic intensity changed from negative to positive in the western region and from positive to negative in the eastern region. STWR model could be a useful method to explore the spatiotemporal heterogeneity of the impacts of air pollution on influenza in geospatial processes. The research findings emphasize the importance of considering spatiotemporal heterogeneity when studying the relationship between air pollution and influenza.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gripe Humana , Humanos , Gripe Humana/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Monitoreo del Ambiente , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA