Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(23): 13143-13153, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32490855

RESUMEN

Polymer dielectrics with high dielectric performances and superior discharge energy capability are highly desirable for advanced electrostatic capacitor applications. However, the paradoxical relationship between dielectric polarization and electric breakdown behavior generally hinder their further enhancement in energy storage performances. Herein, polymer blended composite films with high energy storage capability were successfully fabricated by blending together poly(vinylidene fluoride) (PVDF) polymer and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer. The P(VDF-TrFE-CFE) terpolymer has a high dielectric constant to provide a large electric displacement under an applied electric field far below its breakdown field, which is anticipated to modulate the dielectric polarization behavior of PVDF polymer when blended in different proportions. Consequently, the polymer blended composite film consisting of 20 wt% (P(VDF-TrFE-CFE)) terpolymer exhibits a high discharge energy density of 13.63 J cm-3 at an enhanced breakdown strength of 480 MV m-1. This obtained high discharge energy density is 84% higher than the pure PVDF film and 582% higher than a commercialized biaxially oriented polypropylene (BOPP). Large interfacial polarization and strong interaction of polymer chains between the PVDF polymer and P(VDF-TrFE-CFE) terpolymer may contribute to the tunable dielectric constant and electric breakdown strength, thus promoting the energy storage capability. This work establishes a facile, but effective approach to achieve the high energy storage capability of PVDF polymer-based flexible composite films for capacitive energy storage applications.

2.
Nanotechnology ; 27(38): 385602, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27518499

RESUMEN

A novel simple method was proposed to synthesize BiOCl/Bi2Sn2O7 heterojunction photocatalysts through the treatment of Bi2Sn2O7 with HCl solution of different concentrations. The as-synthesized photocatalysts were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence, x-ray photoelectron spectroscopy and ultraviolet-visible diffuse reflectance spectroscopy. The experimental results show that sheet-like BiOCl particles were obtained after the HCl treatment. Bi2Sn2O7 nanoparticles were distributed on the BiOCl sheets, resulting in the low aggregation of the Bi2Sn2O7 nanoparticles. As compared to BiOCl and Bi2Sn2O7, BiOCl/Bi2Sn2O7 showed enhanced photocatalytic activity under visible light irradiation, which can be attributed to the effective separation of photogenerated electrons and holes due to the formation of a BiOCl/Bi2Sn2O7 heterojunction. In addition, the dominant active species and the photocatalytic mechanism were discussed in detail.

3.
ACS Appl Mater Interfaces ; 12(43): 48781-48793, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33064438

RESUMEN

Lead-free perovskite CaCu3Ti4O12 (CCTO) dielectrics are extremely important candidates for capacitor-varistor dual-function materials. However, their overall success in applications is somewhat controlled by the longstanding issues such as relatively large dielectric loss and insufficiently high electric breakdown field. Herein, we report the success in the preparation of an optimized lead-free (1-x)CaCu3Ti4O12-xSrTiO3 (CCTO-STO) composite system with improved dielectric and nonlinear properties via interface engineering. Interestingly, looking closer at the grain boundaries using transmission electron microscopy, it is found that an obvious interface region with a transition layer of a wrinkled structure is formed between the CCTO matrix phase and STO dopant phase. Significantly, all the composite ceramic samples present high permittivity in the order of about 103 to 104, and the 0.9CCTO-0.1STO composite ceramic sample exhibits a lower dielectric loss of about 0.068 at room temperature and at 1 kHz. Excitingly, the optimized 0.9CCTO-0.1STO composite ceramic sample also exhibits a remarkably elevated breakdown field strength of about 14.03 kV/cm and a large nonlinear coefficient of about 16.11. The improvement in nonlinear properties with a high breakdown field strength and large nonlinear coefficient could be attributed to the interfacial effect in the composite structure, originating from the formation of the transition layer with a wrinkle structure at the interface between CCTO and STO phases. Such effects can result in great electrical heterogeneity caused by the higher resistance of the grain boundary and the enhanced potential barrier at the interface region. The new insights on the formation of the interfacial wrinkle structure near the phase boundaries of the CCTO-STO composite system and their effects on improvement of electrical properties can stimulate future research on lead-free CCTO-STO-based systems toward capacitor-varistor dual-function applications and may offer an effective way to design other lead-free dielectric materials as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA