RESUMEN
Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon flux in the biosphere, but its global magnitude and spatiotemporal dynamics remain uncertain1. The global annual mean GPP is historically thought to be around 120 PgC yr-1 (refs. 2-6), which is about 30-50 PgC yr-1 lower than GPP inferred from the oxygen-18 (18O) isotope7 and soil respiration8. This disparity is a source of uncertainty in predicting climate-carbon cycle feedbacks9,10. Here we infer GPP from carbonyl sulfide, an innovative tracer for CO2 diffusion from ambient air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly representing mesophyll diffusion is important for accurately quantifying the spatiotemporal dynamics of carbonyl sulfide uptake by plants. From the estimate of carbonyl sulfide uptake by plants, we infer a global contemporary GPP of 157 (±8.5) PgC yr-1, which is consistent with estimates from 18O (150-175 PgC yr-1) and soil respiration ( 149 - 23 + 29 PgC yr-1), but with an improved confidence level. Our global GPP is higher than satellite optical observation-driven estimates (120-140 PgC yr-1) that are used for Earth system model benchmarking. This difference predominantly occurs in the pan-tropical rainforests and is corroborated by ground measurements11, suggesting a more productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant of terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a physiological foundation on which the understanding and prediction of carbon-climate feedbacks can be advanced.
Asunto(s)
Dióxido de Carbono , Fotosíntesis , Óxidos de Azufre , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Óxidos de Azufre/metabolismo , Ciclo del Carbono , Suelo/química , Plantas/metabolismo , Difusión , Células del Mesófilo/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Isótopos de Oxígeno/metabolismo , Cloroplastos/metabolismo , Respiración de la CélulaRESUMEN
Zinc and ring finger 3 (ZNRF3) is a negative suppressor of Wnt signal and newly identified as an important regulator in tumorigenesis and development. However, the pan-cancer analysis of ZNRF3 has not been reported. We found that ZNRF3 was significantly decreased in six tumors including CESC, KIRP, KIRC, SKCM, OV, and ACC, but increased in twelve tumors, namely LGG, ESCA, STES, COAD, STAD, LUSC, LIHC, THCA, READ, PAAD, TGCT, and LAML. Clinical outcomes of cancer patients were closely related to ZNRF3 expression in ESCA, GBM, KIRC, LUAD, STAD, UCEC, LGG, and SARC. The highest genetic alteration frequency of ZNRF3 occurred in ACC. Abnormal expression of ZNRF3 could be attributed to the differences of copy number variation (CNV) and DNA methylation as well as ZNRF3-interacting proteins. Besides, ZNRF3 were strongly associated with tumor heterogeneity, tumor stemness, immune score, stromal score and ESTIMATE score in certain cancers. In terms of immune cell infiltration, ZNRF3 was positively correlated to infiltration of cancer-associated fibroblasts in CESC, HNSC, OV, PAAD, PRAD, and THYM, but negatively associated with infiltration of CD8 T cells in HNSC, KIRC, KIRP and THYM. Moreover, ZNRF3 expression was correlated with most immune checkpoint genes in SARC, LUSC, LUAD, PRAD, THCA, UVM, TGCT, and OV, and associated with overwhelming majority of immunoregulatory genes in almost all cancers. Most RNA modification genes were also remarkably related to ZNRF3 level in KIRP, LUAD, LUSC, THYM, UVM, PRAD, and UCEC, indicating that ZNRF3 might have an important effect on cancer epigenetic regulation. Finally, we verified the expression and role of ZNRF3 in clinical specimens and cell lines of renal cancer and liver cancer. This study provides a comprehensive pan-cancer analysis of ZNRF3 and reveals the complexity of its carcinogenic effect.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Variaciones en el Número de Copia de ADN , Epigénesis Genética , Pronóstico , ZincRESUMEN
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Asunto(s)
Ecosistema , Transpiración de Plantas , Óxidos de Azufre , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Fotosíntesis/fisiología , Agua/fisiologíaRESUMEN
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Asunto(s)
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentación , Enfermedades de los Peces , Lacticaseibacillus rhamnosus , Probióticos , Animales , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiología , Probióticos/farmacología , Probióticos/administración & dosificación , Antioxidantes/metabolismo , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Alimentación Animal , Inflamación/prevención & control , Citocinas/metabolismo , AcuiculturaRESUMEN
Detection of magnetic fields is widely used in magnetic materials, electronic devices, medical imaging, and navigation systems. We conducted the experiments using a TGG crystal in different magnetic fields to observe multiple laser self-mixing interference in the frequency domain for experimentation. Every spectral line of the multiple laser self-mixing interference contained the peaks exhibiting a decay trend due to the rotation of the light's polarized orientation according to the Faraday effect. The decay rate of the spectral line depended on the magnetic field density. To quantify the decay rate, the decay coefficient was obtained via fitting of the spectral line. The equation between the decay coefficient and the magnetic field density was established from the experimental results, and the magnetic field density was detected using the equation. This work exhibited a potential detection capability for magnetic fields.
RESUMEN
BACKGROUND: Colon cancer (CC) is a malignancy associated with significant morbidity and mortality within the gastrointestinal tract. Recurrence and metastasis are the main factors affecting the prognosis of CC patients undergoing radical surgery; consequently, we attempted to determine the impact of immunity-related genes. RESULT: We constructed a CC risk model based on ZG16, MPC1, RBM47, SMOX, CPM and DNASE1L3. Consistently, we found that a significant association was found between the expression of most characteristic genes and tumor mutation burden (TMB), microsatellite instability (MSI) and neoantigen (NEO). Additionally, a notable decrease in RBM47 expression was observed in CC tissues compared with that in normal tissues. Moreover, RBM47 expression was correlated with clinicopathological characteristics and improved disease-free survival (DFS) and overall survival (OS) among patients with CC. Lastly, immunohistochemistry and co-immunofluorescence staining revealed a clear positive correlation between RBM47 and CXCL13 in mature tertiary lymphoid structures (TLS) region. CONCLUSION: We conclude that RBM47 was identified as a prognostic-related gene, which was of great significance to the prognosis evaluation of patients with CC and was correlated with CXCL13 in the TLS region.
Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Inestabilidad de Microsatélites , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/mortalidad , Pronóstico , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Anciano , Mutación , Regulación Neoplásica de la Expresión Génica , Supervivencia sin EnfermedadRESUMEN
The aquaculture sector, vital to global food security, grapples with bacterial pathogens compromising fish health and industry sustainability. This investigation probes mucosal immune responses and gut microbiota dynamics in snakehead (Channa argus) post-Aeromonas infection, a prevalent aquaculture challenge. Employing infection models, we delineated the integral role of immunoglobulin T (IgT) in mucosal immunity and its interaction with gut microbiota. Fish from a local farm, maintained under controlled conditions, were infected with Aeromonas veronii TH0426 and Aeromonas hydrophila TPS. Post-infection, daily monitoring and sample collection at specified intervals were conducted for comprehensive analysis. Histopathology, quantitative PCR, immunofluorescence, and microbiota profiling revealed significant immune and microbial changes, particularly at day 7. Intestinal IgT, IgM, and pIgR gene expression surged, indicative of a robust response. Immunofluorescence microscopy confirmed increased IgT+ and pIgR+ cell infiltration in the epithelium. Post-infection dysbiosis, with altered bacterial composition, was partially offset by elevated IgT levels. These insights underscore IgT's crucial function in mucosal defense and suggest potential for probiotic and vaccine strategies to enhance aquaculture disease resilience.
RESUMEN
Background: The authors' preclinical study has confirmed that RO adjuvant (composed of TLR 7 agonists [imiquimod/R837] and OX40 agonists) injected into local lesions induces the regression of both primary tumor and distant metastasis. The authors propose to realize local control and exert abscopal effect through an 'R-ISV-RO' in situ strategy plus anti-PD-1 monoclonal antibody in advanced tumors. Methods: This study is a single-center, exploratory, phase II trial to evaluate the efficacy and safety of R-ISV-RO plus anti-PD-1 monoclonal antibody in advanced tumors. 30 patients with one or more measurable extracerebral lesions that are accessible for radiation or injection will be enrolled. The primary endpoint is the objective response rate of target lesions. Discussion/Conclusion: The efficacy and safety of the novel strategy will be further validated through this clinical trial.Clinical trial registration: ChiCTR2100053870 (www.chictr.org.cn/).
[Box: see text].
Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Femenino , Masculino , Persona de Mediana Edad , Imidazoles/uso terapéutico , Imidazoles/administración & dosificación , Adulto , Viroterapia Oncolítica/métodos , Viroterapia Oncolítica/efectos adversos , Resultado del Tratamiento , AncianoRESUMEN
Twelve new alkaloids, scolopenolines A-L (1-7, 9-11, 13, 14), along with six known analogues, were isolated from Scolopendra subspinipes mutilans, identified by analysis of spectroscopic data and quantum chemical and computational methods. Scolopenoline A (1), a unique guanidyl-containing C14 quinoline alkaloid, features a 6/6/5 ring backbone. Scolopenoline B (2) is a novel sulfonyl-containing heterodimer comprising quinoline and tyramine moieties. Scolopenoline G (7) presents a rare C12 quinoline skeleton with a 6/6/5 ring system. Alkaloids 1, 8, 10, and 15-18 display anti-inflammatory activity, while 10 and 16-18 also exhibit anti-renal-fibrosis activity. Drug affinity responsive target stability and RNA-interference assays show that Lamp2 might be a potentially important target protein of 16 for anti-renal-fibrosis activity.
Asunto(s)
Alcaloides , Animales Ponzoñosos , Quilópodos , Animales , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Estructura Molecular , Artrópodos/química , Fibrosis/tratamiento farmacológico , Riñón/efectos de los fármacos , Quinolinas/farmacología , Quinolinas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , HumanosRESUMEN
ß-arrestin2, a pivotal protein within the arrestin family, is localized in the cytoplasm, plasma membrane and nucleus, and regulates G protein-coupled receptors (GPCRs) signaling. Recent evidence shows that ß-arrestin2 plays a dual role in regulating GPCRs by mediating desensitization and internalization, and by acting as a scaffold for the internalization, kinase activation, and the modulation of various signaling pathways, including NF-κB, MAPK, and TGF-ß pathways of non-GPCRs. Earlier studies have identified that ß-arrestin2 is essential in regulating immune cell infiltration, inflammatory factor release, and inflammatory cell proliferation. Evidently, ß-arrestin2 is integral to the pathological mechanisms of inflammatory immune diseases, such as inflammatory bowel disease, sepsis, asthma, rheumatoid arthritis, organ fibrosis, and tumors. Research on the modulation of ß-arrestin2 offers a promising strategy for the development of pharmaceuticals targeting inflammatory immune diseases. This review meticulously describes the roles of ß-arrestin2 in cells associated with inflammatory immune responses and explores its pathological relevance in various inflammatory immune diseases.
RESUMEN
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Asunto(s)
Vía de Señalización Hippo , Interleucina-6 , Regeneración Hepática , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas , Receptor de Angiotensina Tipo 2 , Transducción de Señal , Animales , Masculino , Ratones , Acetaminofén , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/fisiología , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Proteínas Señalizadoras YAP/metabolismoRESUMEN
The investigation of atmospheric aerosols holds paramount importance within the environmental realm. This significance arises from the intricate nature of aerosol distribution and size in real-life hazy weather conditions. In this work, we have employed the equivalent radius of the aerosols in haze weather obtained from the volume spectrum, and then the scattering characteristics of these aerosols are obtained using the equivalent radius. Pearson correlation coefficients have been used for revealing a strong correlation by comparing Aeronet website data and simulation results with a minimum value of 0.657.
RESUMEN
Soil contamination by petroleum, including crude oil from various sources, is increasingly becoming a pressing global environmental concern, necessitating the exploration of innovative and sustainable remediation strategies. The present field-scale study developed a simple, cost-effective microbial remediation process for treating petroleum-contaminated soil. The soil treatment involves adding microbial activators to stimulate indigenous petroleum-degrading microorganisms, thereby enhancing the total petroleum hydrocarbons (TPH) degradation rate. The formulated microbial activator provided a growth-enhancing complex of nitrogen and phosphorus, trace elements, growth factors, biosurfactants, and soil pH regulators. The field trials, involving two 500 m3 soil samples with the initial TPH content of 5.01% and 2.15%, were reduced to 0.41% and 0.02% in 50 days, respectively, reaching the national standard for cultivated land category II. The treatment period was notably shorter than the commonly used composting and bioaugmentation methods (typically from 8 to 12 weeks). The results indicated that the activator could stimulate the functional microorganisms in the soil and reduce the phytotoxicity of the contaminated soil. After 40 days of treatment, the germination rate of rye seeds increased from 20 to 90%, indicating that the microbial activator could be effectively used for rapid on-site remediation of oil-contaminated soils.
Asunto(s)
Biodegradación Ambiental , Petróleo , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Proyectos Piloto , Hidrocarburos/metabolismo , Contaminación por Petróleo , Suelo/química , Restauración y Remediación Ambiental/métodos , Germinación/efectos de los fármacos , Bacterias/metabolismo , Nitrógeno/metabolismoRESUMEN
Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnOx) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 (MXene) forms an amorphous/crystalline (A/C) interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1â mg cm-2), ultra-thin (~200â nm), and ultra-robust (modulus=4.9â GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3â mAh g-1 and an average Coulombic efficiency of 99.9 % after 400â cycles at 0.5â C.
RESUMEN
After conventional oil recovery operations, more than half of the crude oil still remains in a form, which is difficult to extract. Therefore, exploring and developing new enhanced oil recovery (EOR) technologies have always been priority research in oilfield development. Microbial enhanced oil recovery (MEOR) is a promising tertiary oil recovery technology that has received widespread attention from the global oil industry in recent years due to its environmental friendliness, simplicity of operation, and cost-effectiveness. This review presents the: principle, characteristics, classification, recent development, and applications of MEOR technology. Based on hundreds of field trials conducted worldwide, the microbial strains, nutrient systems, and actual effects used in these technologies are summarized, with an emphasis on the achievements made in the development and application of MEOR in China in recent years. These technical classifications involve: microbial huff and puff recovery (MHPR), microbial flooding recovery (MFR), microbial selective plugging recovery (MSPR), and microbial wax removal and control (MWRC). Most of them have achieved good results, with a success rate of approximately 80%. These successful cases have accumulated into rich experiential indications for the popularization and application of MEOR technology, but there are still important yet uncertain factors that hinder the industrialization of this technology. Finally, based on the extensive research and development of MEOR by the authors, especially in both laboratory and industrial large scales, the main challenges and future perspectives of the industrial application for MEOR are presented.
RESUMEN
Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. ß-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. However, whether ß-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and ß-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver ß-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, ß-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. ß-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that ß-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas ß-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, ß-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3ß pathway. These results suggest that ß-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, ß-arrestin2 may act as an effective therapeutic target for AIH.
Asunto(s)
Hepatitis Autoinmune , Hepatopatías , Arrestina beta 2 , Animales , Ratones , Apoptosis , Autoanticuerpos/metabolismo , Arrestina beta 2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hepatitis Autoinmune/diagnóstico , Hepatitis Autoinmune/tratamiento farmacológico , Hepatocitos/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Macrófagos/metabolismo , Proteínas S100/metabolismoRESUMEN
Intestinal inflammation is a protective response that is implicated in bacterial enteritis triggered by gastrointestinal infection. The immune mechanisms elicited in teleost against the infection of Aeromonas veronii are largely unknown. In this study, we performed a de novo northern snakehead (Channa argus) transcriptome assembly using Illumina sequencing platform. On this basis we performed a comparative transcriptomic analysis of northern snakehead intestine from A. veronii-challenge and phosphate buffer solution (PBS)-challenge fish, and 2076 genes were up-regulated and 1598 genes were down-regulated in the intestines infected with A. veronii. The Gene Ontology (GO) enrichment analysis indicated that the differentially expressed genes (DEGs) were enriched to 27, 21 and 20 GO terms in biological process, cellular component, and molecular function, respectively. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 420 DEGs were involved in 194 pathways. Moreover, 33 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results reflected the consistency of the expression levels between qRT-PCR and RNA-seq data. In addition, a time-course analysis of the mRNA expression of 33 immune-related genes further indicated that the intestinal inflammation to A. veronii infection simultaneously regulated gene expression alterations. The present study provides transcriptome data of the teleost intestine, allowing us to understand the mechanisms of intestinal inflammation triggered by bacterial pathogens. DATA AVAILABILITY STATEMENT: All data supporting the findings of this study are available within the article and Supplementary files. The RNA-seq raw sequence data are available in NCBI short read archive (SRA) database under accession number PRJNA615958.
Asunto(s)
Aeromonas veronii , Transcriptoma , Animales , Aeromonas veronii/genética , Perfilación de la Expresión Génica , Intestinos , Inmunidad , InflamaciónRESUMEN
The concentration of an electrolyte is an optical characteristic of drinking water. We propose a method based on the multiple self-mixing interference with absorption for detecting the Fe2+ indicator as the electrolyte sample at a micromolar concentration. The theoretical expressions were derived based on the lasing amplitude condition in the presence of the reflected lights considering the concentration of the Fe2+ indicator via the absorption decay according to Beer's law. The experimental setup was built to observe MSMI waveform using a green laser whose wavelength was located in the extent of the Fe2+ indicator's absorption spectrum. The waveforms of the multiple self-mixing interference were simulated and observed at different concentrations. The simulated and experimental waveforms both contained the main and parasitic fringes whose amplitudes varied at different concentrations with different degrees, as the reflected lights participated in the lasing gain after absorption decay by the Fe2+ indicator. The experimental results and the simulated results showed a nonlinear logarithmic distribution of the amplitude ratio, the defined parameter estimating the waveform variations, versus the concentration of the Fe2+ indicator via numerical fitting.
RESUMEN
PURPOSE: To explore the pathological changes in optic nerve injury models under varying forces. METHODS: The rats were classified into 4 groups: sham operation (SH), 0.1, 0.3, and 0.5 N. Modeling was performed using the lateral optic nerve pulling method. Seven days after modeling, Brn3a immunofluorescence was used to detect retinal ganglion cell (RGC) number, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect RGC apoptosis, and flash visual evoked potential (FVEP) was used to detect the optic nerve function on days 1, 3, and 7 after modeling. In addition, LC3 II and P62 expression levels in retinal tissues were detected by western blotting to observe the changes in autophagy levels. RESULTS: RGC number decreased 7 d after modeling, and it showed a downward trend with increasing damaging force. The number of apoptotic RGCs in ganglion cell layer in the 0.3 and 0.5 N groups was increased and was higher than that in the 0.1 N group. The difference in FVEP of rats in each group was mainly reflected in the P2 peak latency. LC3 II and P62 expression levels in retinal tissue of 0.3 and 0.5 N groups were higher than those of the SH and 0.1 groups; however, the difference between the 0.1 N and SH groups was not statistically significant. CONCLUSION: Precisely controlling the force of the optic nerve clamping injury model is necessary because different forces acting on the optic nerve will lead to differences in the loss of optic neurons, the conduction function of the optic nerve, and autophagy level in retinal tissues.
Asunto(s)
Traumatismos del Nervio Óptico , Ratas , Animales , Potenciales Evocados Visuales , Retina/patología , Células Ganglionares de la Retina/patología , Nervio Óptico/patología , Modelos Animales de EnfermedadRESUMEN
Carbonyl sulfide (COS) has emerged as a multi-scale tracer for terrestrial photosynthesis. To infer ecosystem-scale photosynthesis from COS fluxes often requires knowledge of leaf relative uptake (LRU), the concentration-normalized ratio between leaf COS uptake and photosynthesis. However, current mechanistic understanding of LRU variability remains inadequate for deriving robust COS-based estimates of photosynthesis. We derive a set of closed-form equations to describe LRU responses to light, humidity and CO2 based on the Ball-Berry stomatal conductance model and the biochemical model of photosynthesis. This framework reproduces observed LRU responses: decreasing LRU with increasing light or decreasing humidity; it also predicts that LRU increases with ambient CO2 . By fitting the LRU equations to flux measurements on a C3 reed (Typha latifolia), we obtain physiological parameters that control LRU variability, including an estimate of the Ball-Berry slope of 7.1 without using transpiration measurements. Sensitivity tests reveal that LRU is more sensitive to photosynthetic capacity than to the Ball-Berry slope, indicating stomatal response to photosynthesis. This study presents a simple framework for interpreting observed LRU variability and upscaling LRU. The stoma-regulated LRU response to CO2 suggests that COS may offer a unique window into long-term stomatal acclimation to elevated CO2 .