Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 513(4): 1083-1091, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31010682

RESUMEN

Cluster of differentiation 147 (CD147), a transmembrane protein of the immunoglobulin superfamily, is a potential target of treatment against human non-small cell lung cancer (NSCLC). Although there have been exciting advances in epidermal growth factor receptor (EGFR)-targeted therapy for NSCLC in recent years, additional novel targeted agents are needed to improve the efficiency and to offer more options for patients. Antibody-drug conjugates (ADCs) utilize a chemical linker to conjugate cytotoxic drugs to a monoclonal antibody to maximize the delivery to target cells and minimize the delivery to other normal cells. The aim of this study was to prepare a novel anti-CD147 conjugate and examine the tumoricidal effect on NSCLC in vitro and in vivo. HcHAb18 was conjugated to the drug maytansinoid 1 (DM1) via a non-cleavable thioether linker (SMCC) to prepare HcHAb18-DM1 with an appropriate drug-antibody ratio (DAR). NSCLC cell lines expressing different levels of CD147 were tested in vitro to determine internalization, cell cycle arrest and cytotoxicity. In vivo efficacy and safety of HcHAb18-DM1 were evaluated in NSCLC xenograft mouse models. We found that HcHAb18-DM1 displayed an impressive potency in vitro and in vivo with a favorable safety profile. Upon binding to CD147, HcHAb18 could be internalized and delivered the payload DM1 to disturb mitotic spindle formation by microtubules. Target cells were arrested at G2/M phase and HcHAb18-DM1 exerted antiproliferative activity in vitro. Antigen-antibody binding and target cells with high growth rate were two integral prerequisites for exerting anti-tumor activity of HcHAb18-DM1. Therefore, we suggest HcHAb18-DM1 is a promising CD147-targeted therapeutic for NSCLC.


Asunto(s)
Basigina/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Maitansina/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Basigina/análisis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Humanos , Inmunoconjugados/química , Ratones
2.
Mol Cancer ; 14: 5, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25608619

RESUMEN

UNLABELLED: Growing evidence indicates that miR-146a is involved in carcinogenesis and tumor progression in several human malignancies. However, the molecular details underlying miR-146a mediated regulation of its target genes and its precise biological function in cancer, especially in hepatocellular carcinoma (HCC) remains unclear. METHODS: The expression levels of genes including miR-146a, APC, VEGF and HAb18G were examined in HCC cell lines and patient specimens were compared with control levels using quantitative reverse transcription-PCR. The functions of miR-146a and HAb18G in migration/invasion and liver metastasis formation were determined by transwell and spleen injection assays, respectively. miR-146a related genes were determined by PCR array. The potential regulatory targets of miR-146a were determined by bioinformatics and prediction tools, correlation with target protein expression, and luciferase reporter assay. DNA methylation status of miR-146a promoter were performed by PCR analysis of bisulfite-modified genomic DNA. RESULTS: We demonstrated that miR-146a expression was markedly downregulated in hepatoma cells and hepatoma tissues compared to immortalized normal liver epithelial cells and normal hepatic tissues. DNA methylation of miR-146a promoter correlated with its downexpression and with liver cancer metastasis. The restoration of miR-146a dramatically suppressed HCC cell invasion and metastasis by repressing VEGF expression through upregulating APC, which inhibits ß-catenin accumulation in nucleus, and downregulating NF-κB p65 by targeting HAb18G. In human HCC, miR-146a expression was negative correlated with increased HAb18G, VEGF, NF-κB p65 and beneficial prognosis. CONCLUSION: This study identified a novel target of miR-146a and defined miR-146a as a crucial tumor suppressor in human HCC that acts through multiple pathways and mechanisms to suppress HCC invasion or metastasis.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/genética , Factores de Crecimiento Endotelial Vascular/genética , Regiones no Traducidas 3' , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Basigina/genética , Sitios de Unión , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Metilación de ADN , Modelos Animales de Enfermedad , Regulación hacia Abajo , Xenoinjertos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Metástasis de la Neoplasia , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal , Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Biochem Biophys Res Commun ; 468(4): 906-12, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26616059

RESUMEN

Although the expression levels of total GalNAc-binding proteins (GNBPs) were up-regulated significantly in human hepatic stellate cells (HSCs) activated with transforming growth factor-ß1(TGF-ß1), yet little is known about the precise types, distribution and sub-cellular localization of the GNBPs in HSCs. Here, 264 GNBPs from the activated HSCs and 257 GNBPs from the quiescent HSCs were identified and annotated. A total of 46 GNBPs were estimated to be significantly up-regulated and 40 GNBPs were estimated to be significantly down-regulated in the activated HSCs. For example, the GNBPs (i.e. BTF3, COX17, and ATP5A1) responsible for the regulation of protein binding were up-regulated, and those (i.e. FAM114A1, ENO3, and TKT) responsible for the regulation of protein binding were down-regulated in the activated HSCs. The motifs of the isolated GNBPs showed that Proline residue had the maximum preference in consensus sequences. The western blotting showed the expression levels of COX17, and PRMT1 were significantly up-regulated, while, the expression level of CLIC1(B5) was down-regulated in the activated HSCs and liver cirrhosis tissues. Moreover, the GNBPs were sub-localized in the Golgi apparatus of HSCs. In conclusion, the precision alteration of the GNBPs referred to pathological changes in liver fibrosis/cirrhosis may provide useful information to find new molecular mechanism of HSC activation and discover the biomarkers for diagnosis of liver fibrosis/cirrhosis as well as development of new anti-fibrotic strategies.


Asunto(s)
Acetilgalactosamina/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/ultraestructura , Fracciones Subcelulares/metabolismo , Células Cultivadas , Glicosilación , Humanos , Distribución Tisular
4.
J Transl Med ; 12: 190, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24996644

RESUMEN

BACKGROUND: As a surface glycoprotein, CD147 is capable of stimulating the production of matrix metalloproteinases (MMPs) from neighboring fibroblasts. The aim of the present study is to explore the role of soluble CD147 on MMPs secretion from hepatocellular carcinoma (HCC) cells, and to investigate the diagnostic value of serum soluble CD147 in the HCC detection. METHODS: We identified the form of soluble CD147 in cell culture supernate of HCC cells and serum of patients with HCC, and explored the role of soluble CD147 on MMPs secretion. Serum CD147 levels were detected by the enzyme-linked immunosorbent assay, and the value of soluble CD147 as a marker in HCC detection was analyzed. RESULTS: Full length soluble CD147 was presented in the culture medium of HCC cells and serum of patients with HCC. The extracellular domain of soluble CD147 promoted the expression of CD147 and MMP-2 from HCC cells. Knockdown of CD147 markedly diminished the up-regulation of CD147 and MMP-2 which induced by soluble CD147. Soluble CD147 activated ERK, FAK, and PI3K/Akt pathways, leading to the up-regulation of MMP-2. The level of soluble CD147 in serum of patients with HCC was significantly elevated compared with healthy individuals (P < 0.001). Soluble CD147 levels were found to be associated with HCC tumor size (P = 0.007) and Child-Pugh grade (P = 0.007). Moreover, soluble CD147 showed a better performance in distinguishing HCC compared with alpha-fetoprotein. CONCLUSIONS: The extracellular domain of soluble CD147 enhances the secretion of MMP-2 from HCC cells, requiring the cooperation of membrane CD147 and activation of ERK, FAK, and PI3K/Akt signaling. The measurement of soluble CD147 may offer a useful approach in diagnosis of HCC.


Asunto(s)
Basigina/metabolismo , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Adulto , Anciano , Basigina/sangre , Basigina/química , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Membrana Celular/metabolismo , Medios de Cultivo Condicionados/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Curva ROC , Transducción de Señal , Solubilidad , Regulación hacia Arriba , alfa-Fetoproteínas/metabolismo
5.
Biomolecules ; 14(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38397417

RESUMEN

Severe combined immunodeficient (SCID) mice serve as a critical model for human xenotransplantation studies, yet they often suffer from low engraftment rates and susceptibility to graft-versus-host disease (GVHD). Moreover, certain SCID strains demonstrate 'immune leakage', underscoring the need for novel model development. Here, we introduce an SCID mouse model with a targeted disruption of the dclre1c gene, encoding Artemis, which is essential for V(D)J recombination and DNA repair during T cell receptor (TCR) and B cell receptor (BCR) assembly. Artemis deficiency precipitates a profound immunodeficiency syndrome, marked by radiosensitivity and compromised T and B lymphocyte functionality. Utilizing CRISPR/Cas9-mediated gene editing, we generated dclre1c-deficient mice with an NOD genetic background. These mice exhibited a radiosensitive SCID phenotype, with pronounced DNA damage and defective thymic, splenic and lymph node development, culminating in reduced T and B lymphocyte populations. Notably, both cell lines and patient-derived tumor xenografts were successfully engrafted into these mice. Furthermore, the human immune system was effectively rebuilt following peripheral blood mononuclear cells (PBMCs) transplantation. The dclre1c-knockout NOD mice described herein represent a promising addition to the armamentarium of models for xenotransplantation, offering a valuable platform for advancing human immunobiological research.


Asunto(s)
Endonucleasas , Huésped Inmunocomprometido , Leucocitos Mononucleares , Proteínas Nucleares , Trasplante Heterólogo , Animales , Humanos , Ratones , Endonucleasas/genética , Xenoinjertos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutación , Proteínas Nucleares/genética , Huésped Inmunocomprometido/genética , Modelos Animales
6.
Cell Mol Immunol ; 21(3): 292-308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287103

RESUMEN

CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Agotamiento de Células T , Neoplasias/patología , Histona Demetilasas/metabolismo , Cromatina/metabolismo
7.
Proteomics ; 13(5): 878-92, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23300094

RESUMEN

The interaction of glycan-binding proteins (GBPs) and glycans plays a significant biological role that ranges from cell-cell recognition to cell trafficking, and glycoprotein targeting. The anomalies of GBPs related to the types and/or quantities were not clearly known in cancer incidence. It is imperative to identify and annotate the GBPs related with the canceration. Here the mannose-binding proteins (MBPs) from the clinical sera were isolated and identified by the mannose-magnetic particle conjugates and the high-accuracy MS analysis. Seventy-five MBPs from normal donors' sera and 79 MBPs from hepatocellular carcinoma patients' sera were identified and annotated. By using the stringent criteria of exponentially modified protein abundance index (emPAI) quantification, 12 MBPs were estimated to be significantly upregulated (emPAI ratio > 4) and nine MBPs were estimated to be significantly downregulated (emPAI ratio < 0.25) in the hepatocellular carcinoma sera. Real-time quantitative PCR, Western blotting, and protein microarrays were also used to confirm the altered MBPs expression level and the specific binding between the isolated MBPs and mannose. The sequence recognition motifs and structure preference of the isolated MBPs were characterized. The functional enrichment analysis revealed that over 57% of the isolated MBPs were binding protein and the upregulated MBPs were involved in cell death, tumor progression, and macromolecular complex remodeling.


Asunto(s)
Carcinoma Hepatocelular/sangre , Neoplasias Hepáticas/sangre , Lectinas de Unión a Manosa/sangre , Proteínas de Neoplasias/sangre , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Western Blotting , Carcinoma Hepatocelular/metabolismo , Estudios de Casos y Controles , Cromatografía Liquida , Humanos , Neoplasias Hepáticas/metabolismo , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/genética , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Análisis por Matrices de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem
8.
Signal Transduct Target Ther ; 8(1): 42, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681668

RESUMEN

The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , COVID-19/genética , Leucocitos Mononucleares , SARS-CoV-2 , Anticuerpos Neutralizantes , Epítopos , Ratones Transgénicos
9.
Science ; 379(6637): eabg2482, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927018

RESUMEN

Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Cisteína , Cadenas HLA-DRB1 , Integrina alfa2 , Procesamiento Proteico-Postraduccional , Espondilitis Anquilosante , Animales , Ratones , Autoanticuerpos/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Autoinmunidad/genética , Autoinmunidad/inmunología , Cisteína/metabolismo , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/metabolismo , Ratones Transgénicos , Integrina alfa2/metabolismo , Microbioma Gastrointestinal , Humanos , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/metabolismo
10.
Signal Transduct Target Ther ; 8(1): 46, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717539

RESUMEN

Meplazumab, a humanized CD147 antibody, has shown favourable safety and efficacy in our previous clinical studies. In DEFLECT (NCT04586153), 167 patients with severe COVID-19 were enroled and randomized to receive three dosages of meplazumab and a placebo. Meplazumab at 0.12 mg/kg, compared to the placebo group, showed clinical benefits in significantly reducing mortality by 83.6% (2.4% vs. 14.6%, p = 0.0150), increasing the proportion of patients alive and discharged without supplemental oxygen (82.9% vs. 70.7%, p = 0.0337) and increasing the proportion of patients who achieved sustained clinical improvement (41.5% vs. 31.7%). The response rate in the 0.2 mg/kg group was relatively increased by 16.0% compared with the placebo group (53.7% vs. 46.3%). Meplazumab also reduced the viral loads and multiple cytokine levels. Compare with the placebo group, the 0.3 mg/kg significantly increased the virus negative rate by 40.6% (p = 0.0363) and reduced IL-8 level (p = 0.0460); the 0.2 mg/kg increased the negative conversion rate by 36.9%, and reduced IL-4 (p = 0.0365) and IL-8 levels (p = 0.0484). In this study, the adverse events occurred at a comparable rate across the four groups, with no unexpected safety findings observed. In conclusion, meplazumab promoted COVID-19 convalescence and reduced mortality, viral load, and cytokine levels in severe COVID-19 population with good safety profile.


Asunto(s)
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Interleucina-8 , Citocinas
11.
Cancer Commun (Lond) ; 42(8): 750-767, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716012

RESUMEN

BACKGROUND: The mechanism underlying colorectal cancer (CRC) initiation and progression remains elusive, and overall survival is far from satisfactory. Previous studies have shown that PDGFA-associated protein 1 (PDAP1) is upregulated in several cancers including CRC. Here, we aimed to identify the cause and consequence of PDAP1 dysregulation in CRC and evaluate its role as a potential therapeutic target. METHODS: Multi-omics data analysis was performed to identify potential key players in CRC initiation and progression. Immunohistochemistry (IHC) staining was applied to determine the expression pattern of PDAP1 in CRC tissues. Pdap1 conditional knockout mice were used to establish colitis and CRC mouse models. RNA sequencing, a phosphoprotein antibody array, western blotting, histological analysis, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, and interactome analysis were applied to identify the underlying mechanisms of PDAP1. A human patient-derived xenograft (PDX) model was used to assess the potential of PDAP1 as a therapeutic target. RESULTS: PDAP1 was identified as a potential key player in CRC development using multi-omics data analysis. PDAP1 was overexpressed in CRC cells and correlated with reduced overall survival. Further investigation showed that PDAP1 was critical for the regulation of cell proliferation, migration, invasion, and metastasis. Significantly, depletion of Pdap1 in intestinal epithelial cells impaired mucosal restitution in dextran sulfate sodium salt-induced colitis and inhibited tumor initiation and growth in colitis-associated cancers. Mechanistic studies showed that c-Myc directly transactivated PDAP1, which contributed to the high PDAP1 expression in CRC cells. PDAP1 interacted with the juxtamembrane domain of epidermal growth factor receptor (EGFR) and facilitated EGFR-mitogen-activated protein kinase (MAPK) signaling activation, which resulted in FOS-related antigen 1 (FRA-1) expression, thereby facilitating CRC progression. Notably, silencing of PDAP1 could hinder the growth of patient-derived xenografts that sustain high PDAP1 levels. CONCLUSIONS: PDAP1 facilitates mucosal restitution and carcinogenesis in colitis-associated cancer. c-Myc-driven upregulation of PDAP1 promotes proliferation, migration, invasion, and metastasis of CRC cells via the EGFR-MAPK-FRA-1 signaling axis. These findings indicated that PDAP1 inhibition is warranted for CRC patients with PDAP1 overexpression.


Asunto(s)
Colitis , Neoplasias Colorrectales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Proliferación Celular , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones
12.
Oncogene ; 41(7): 983-996, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974521

RESUMEN

Though the great success of paclitaxel, the variable response of patients to the drug limits its clinical utility and the precise mechanisms underlying the variable response to paclitaxel remain largely unknown. This study aims to verify the role and the underlying mechanisms of CD147 in paclitaxel resistance. Immunostaining was used to analyze human non-small-cell lung cancer (NSCLC) and ovarian cancer tissues. RNA-sequencing was used to identify downstream effectors. Annexin V-FITC/propidium iodide and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect apoptosis. Co-immunoprecipitation (Co-IP), fluorescence resonance energy transfer (FRET) and surface plasmon resonance (SPR) were performed to determine protein interactions. Fluorescence recovery after photobleaching (FRAP) was performed to measure the speed of microtubule turnover. Xenograft tumor model was established to evaluate sensitivity of cancer cells to paclitaxel in vivo. In vitro and in vivo assays showed that silencing CD147 sensitized the cancer cells to paclitaxel treatment. CD147 protected cancer cells from paclitaxel-induced caspase-3 mediated apoptosis regardless of p53 status. Truncation analysis showed that the intracellular domain of CD147 (CD147ICD) was indispensable for CD147-regulated sensitivity to paclitaxel. Via screening the interacting proteins of CD147ICD, Ran binding protein 1 (RanBP1) was identified to interact with CD147ICD via its C-terminal tail. Furthermore, we showed that RanBP1 mediated CD147-regulated microtubule stability and dynamics as well as response to paclitaxel treatment. These results demonstrated that CD147 regulated paclitaxel response by interacting with the C-terminal tail of RanBP1 and targeting CD147 may be a promising strategy for preventing paclitaxel resistant.


Asunto(s)
Paclitaxel
13.
Cancer Lett ; 542: 215762, 2022 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-35659513

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is invasive and heterogeneous, and existing therapies are sometimes unsuccessful. Chimeric antigen receptor (CAR) T cell therapy is a breakthrough tumor treatment method, particularly for B cell acute lymphoblastic leukemia. We found that CD147 was highly expressed in tumor T cells of T-ALL patients and T cell lymphoma. Therefore, CD147-CAR T cells that contain a humanized single-chain variable fragment targeting human CD147 and a second-generation CAR frame were constructed for treating T-ALL. CD147-CAR T cells were able to maintain a healthy proliferation rate, preserving a subset of CD62L+/CCR7+ memory T cells. CD147-CAR T cells showed a potent anti-tumor activity against human T-ALL cell line and T-ALL blasts, releasing high level of cytokines in the process. However, CD147-CAR T cells exhibited potential safety toward human normal cells and CD147-deficent cells. NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mice were used to establish a T-ALL xenograft model and CD147-CAR T cells conferred robust protection against T-ALL progression and significantly improved survival in mice. Overall, we found that CD147 is a potential antigen target of CAR T cell therapy for T-ALL.


Asunto(s)
Basigina , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Animales , Basigina/inmunología , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Endogámicos NOD , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T
14.
Signal Transduct Target Ther ; 7(1): 382, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36424379

RESUMEN

COVID-19 patients can develop clinical and histopathological features associated with fibrosis, but the pathogenesis of fibrosis remains poorly understood. CD147 has been identified as a universal receptor for SARS-CoV-2 and its variants, which could initiate COVID-19-related cytokine storm. Here, we systemically analyzed lung pathogenesis in SARS-CoV-2- and its delta variant-infected humanized CD147 transgenic mice. Histopathology and Transmission Electron Microscopy revealed inflammation, fibroblast expansion and pronounced fibrotic remodeling in SARS-CoV-2-infected lungs. Consistently, RNA-sequencing identified a set of fibrosis signature genes. Furthermore, we identified CD147 as a crucial regulator for fibroblast activation induced by SARS-CoV-2. We found conditional knockout of CD147 in fibroblast suppressed activation of fibroblasts, decreasing susceptibility to bleomycin-induced pulmonary fibrosis. Meplazumab, a CD147 antibody, was able to inhibit the accumulation of activated fibroblasts and the production of ECM proteins, thus alleviating the progression of pulmonary fibrosis caused by SARS-CoV-2. In conclusion, we demonstrated that CD147 contributed to SARS-CoV-2-triggered progressive pulmonary fibrosis and identified CD147 as a potential therapeutic target for treating patients with post-COVID-19 pulmonary fibrosis.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/genética , SARS-CoV-2 , COVID-19/genética
15.
Int J Biol Macromol ; 172: 330-340, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33453256

RESUMEN

Novel nanocomposite hydrogels were successfully prepared by blending and crosslinking sodium alginate (SA), poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNFs) in the presence of a fertilizer formulation containing nitrogen (N), phosphorus (P) and potassium (K). The hydrogels had a macroporous flexible core and a microporous semi- interpenetrating polymer network (IPN) shell. The crystalline nature of the NPK chemicals was retained in the hydrogel nanocomposite network. Furthermore, the SA/CNF/PVA-based hydrogels showed a higher water-retention capacity in both deionized water and mixed soil. The swelling behavior in various physiological pH, salt and alkali solutions exhibited good sensitivity. The NPK release from SA/CNF/NPK and SA/CNF/PVA/NPK hydrogels was controlled by Fickian diffusion in both water and soil based on the Korsmeyer-Peppas release kinetics model (n < 0.5). Therefore, the prepared hydrogels have the potential for applications in drought-prone and/or fertilizer-loss regions for future development of precision agriculture and horticulture.


Asunto(s)
Alginatos/química , Preparaciones de Acción Retardada/química , Nanofibras/química , Nitrógeno/química , Fósforo/química , Alcohol Polivinílico/química , Potasio/química , Agricultura/métodos , Cristalización , Liberación de Fármacos , Fertilizantes/análisis , Humanos , Concentración de Iones de Hidrógeno , Cinética , Nanofibras/ultraestructura , Porosidad , Agua/química
16.
Carbohydr Polym ; 259: 117764, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674020

RESUMEN

Sustainable nanomaterials (SNMs) from wood, sugarcane and crab shell were prepared and used to coat selected fruits. The properties of SNMs and selected fruits were characterized and strawberry was used as an example to test antifungal activity and freshness preservation of the SNMs. The SNMs with their nano-structured morphology form strong shear-thinning dispersions for easy spraying on fruit surfaces. The fruit surface free energy was influenced by its surface morphology, predominant surface wax components, and cutin monomers. The antifungal activity of SNMs was influenced by their surface functional groups and particle size (crystals vs fibers). The coblend of wood nanocrystals (WCNCs) and chitosan nanofiber (CSNFs) exhibited the best antifungal property, which was comparable with the performance of the fungicide thiabendazole (80 mg L-1). The weight loss and color change of the WCNC/CSNF coated strawberries decreased by nearly half compared with the control samples, showing coating effectiveness on preserving fruit freshness.

17.
Cell Metab ; 33(1): 160-173.e6, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406400

RESUMEN

CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.


Asunto(s)
Basigina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ácido Láctico/metabolismo , Neoplasias Pulmonares/metabolismo , Oligopéptidos/metabolismo , Animales , Línea Celular , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
18.
Signal Transduct Target Ther ; 6(1): 268, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262017

RESUMEN

Major gaps in understanding the molecular mechanisms of colorectal cancer (CRC) progression and intestinal mucosal repair have hampered therapeutic development for gastrointestinal disorders. Trefoil factor 3 (TFF3) has been reported to be involved in CRC progression and intestinal mucosal repair; however, how TFF3 drives tumors to become more aggressive or metastatic and how TFF3 promotes intestinal mucosal repair are still poorly understood. Here, we found that the upregulated TFF3 in CRC predicted a worse overall survival rate. TFF3 deficiency impaired mucosal restitution and adenocarcinogenesis. CD147, a membrane protein, was identified as a binding partner for TFF3. Via binding to CD147, TFF3 enhanced CD147-CD44s interaction, resulting in signal transducer and activator of transcription 3 (STAT3) activation and prostaglandin G/H synthase 2 (PTGS2) expression, which were indispensable for TFF3-induced migration, proliferation, and invasion. PTGS2-derived PGE2 bound to prostaglandin E2 receptor EP4 subtype (PTGER4) and contributed to TFF3-stimulated CRC progression. Solution NMR studies of the TFF3-CD147 interaction revealed the key residues critical for TFF3 binding and the induction of PTGS2 expression. The ability of TFF3 to enhance mucosal restitution was weakened by a PTGS2 inhibitor. Blockade of TFF3-CD147 signaling using competitive inhibitory antibodies or a PTGS2 inhibitor reduced CRC lung metastasis in mice. Our findings bring strong evidence that CD147 is a novel receptor for TFF3 and PTGS2 signaling is critical for TFF3-induced mucosal restitution and CRC progression, which widens and deepens the understanding of the molecular function of trefoil factors.


Asunto(s)
Basigina/genética , Neoplasias Colorrectales/tratamiento farmacológico , Ciclooxigenasa 2/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética , Factor Trefoil-3/genética , Animales , Basigina/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ciclooxigenasa 2/efectos de los fármacos , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Unión Proteica/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Signal Transduct Target Ther ; 6(1): 347, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34564690

RESUMEN

SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape, compromising the effectiveness of existing vaccines and neutralizing antibodies. An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants. Here, we identified CD147 as a universal receptor for SARS-CoV-2 and its variants. Meanwhile, Meplazeumab, a humanized anti-CD147 antibody, could block cellular entry of SARS-CoV-2 and its variants-alpha, beta, gamma, and delta, with inhibition rates of 68.7, 75.7, 52.1, 52.1, and 62.3% at 60 µg/ml, respectively. Furthermore, humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants, alpha and beta. When infected, these mice developed exudative alveolar pneumonia, featured by immune responses involving alveoli-infiltrated macrophages, neutrophils, and lymphocytes and activation of IL-17 signaling pathway. Mechanistically, we proposed that severe COVID-19-related cytokine storm is induced by a "spike protein-CD147-CyPA signaling axis": Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway, which further induced expression of cyclophilin A (CyPA); CyPA reciprocally bound to CD147 and triggered MAPK pathway. Consequently, the MAPK pathway regulated the expression of cytokines and chemokines, which promoted the development of cytokine storm. Importantly, Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants. Therefore, our findings provided a new perspective for severe COVID-19-related pathogenesis. Furthermore, the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Basigina/antagonistas & inhibidores , Basigina/metabolismo , Tratamiento Farmacológico de COVID-19 , COVID-19/metabolismo , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , Basigina/genética , COVID-19/genética , Chlorocebus aethiops , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , Células Vero
20.
Signal Transduct Target Ther ; 6(1): 194, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001849

RESUMEN

Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication. Meplazumab is a humanized anti-CD147 IgG2 monoclonal antibody, which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019 (COVID-19) patients. Here, we conducted a randomized, double-blinded, placebo-controlled phase 1 trial to evaluate the safety, tolerability, and pharmacokinetics of meplazumab in healthy subjects, and an open-labeled, concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients. In phase 1 study, 59 subjects were enrolled and assigned to eight cohorts, and no serious treatment-emergent adverse event (TEAE) or TEAE grade ≥3 was observed. The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics. No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort. The biodistribution study indicated that meplazumab reached lung tissue and maintained >14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32. In the exploratory phase 2 study, 17 COVID-19 patients were enrolled, and 11 hospitalized patients were involved as concurrent control. The meplazumab treatment significantly improved the discharged (P = 0.005) and case severity (P = 0.021), and reduced the time to virus negative (P = 0.045) in comparison to the control group. These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Tratamiento Farmacológico de COVID-19 , COVID-19/metabolismo , Pulmón/metabolismo , SARS-CoV-2/metabolismo , Adolescente , Adulto , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacocinética , COVID-19/patología , Método Doble Ciego , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA