Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Urol Nephrol ; 56(8): 2743-2753, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38512440

RESUMEN

OBJECTIVE: This study aimed to integrate bioinformatics technology to explore shared hub genes and related mechanisms between diabetes and tuberculosis and to provide a theoretical basis for revealing the disease mechanisms in patients with both diabetes and tuberculosis. METHODS: Differentially expressed genes and Venn analysis were used to identify shared genes between diabetes and tuberculosis. PPI network analysis was used to screen key hub genes. GO and KEGG analyses were used to analyze the potential biological functions of these key hub genes. Immune infiltration analysis was performed using the ssGSEA algorithm. EnrichR online analysis website was used to explore potential therapeutic drugs. RESULTS: The dataset analysis showed that PSMB9, ISG15, RTP4, CXCL10, GBP2, and GBP3 were six hub genes shared by diabetes and tuberculosis, which not only could distinguish between the two disease samples but also had a high diagnostic rate. GO and KEGG analyses showed that these six genes mainly mediate immune-related biological processes such as interferon, interleukin, and chemokine receptor binding, as well as signaling pathways such as RIG-I-like receptor, NOD-like receptor, and proteasome. Immune infiltration analysis showed that high expression of TIL may mediate the development of both diabetes and tuberculosis. In addition, suloctidil HL60 UP, thioridazine HL60 UP, mefloquine HL60 UP, 1-NITROPYRENE CTD 00001569, and chlorophyllin CTD 00000324 were the candidate drugs predicted by this study that were most likely to target hub genes. CONCLUSION: Six differentially expressed genes shared by both diseases (PSMB9, ISG15, RTP4, CXCL10, GBP2, and GBP3) may play a key role in the disease progression of patients with both diabetes and tuberculosis. Candidate drugs targeting these hub genes have therapeutic potential and are worthy of further research. In summary, this study reveals potential shared pathogenic mechanisms between tuberculosis and diabetes.


Asunto(s)
Diabetes Mellitus , Tuberculosis , Humanos , Tuberculosis/genética , Diabetes Mellitus/genética , Biología Computacional
2.
J Ethnobiol Ethnomed ; 20(1): 55, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790060

RESUMEN

BACKGROUND: The Daur people are one of the 55 minority ethnic groups in China and have lived in Northern China for 300 years. In traditional Daur medicine, medicinal and edible plants (MEPs) are utilised for health benefits and therapeutic purposes; however, related ethnobotanical knowledge is rarely reported, which is disadvantageous for the sustainable development of these MEPs. METHODS: Semi-structured interviews with 122 informants, six focus group discussions, and a resource survey were conducted in a Daur minority nationality area in Inner Mongolia from 2015 to 2020, and the data statistics were analysed. In this study, we simulated a system dynamics model aimed at understanding the multiple feedback mechanisms involved in the relationships between the cultural influences and socioeconomic factors, sustainable environment, and development of MEPs. RESULTS: A total of 52 species of MEPs were identified and relevant ethnobotanical knowledge was assessed using Daur medicinal species data from Inner Mongolia and the Xinjiang region, with the literature and Ewenki ethnic group data used for comparison. The most commonly used medicinal plant species by the Daur were found to be Betula pendula subsp. mandshurica, Artemisia integrifolia, Crataegus pinnatifida, Saposhnikovia divaricata, Artemisia argyi, and Jacobaea cannabifolia. The MEPs most frequently targeted the digestive and rheumatic immunity systems, as well as infectious diseases or parasitic infections and other common diseases and basic health issues. MEP knowledge was primarily limited to older generations; thus, the valuable ethnobotanical knowledge on traditional medicines must be protected from future losses. CONCLUSIONS: Our findings provide insights for future research aimed at exploiting the rich phytochemical diversity in traditional medicine and promote its use in modern lifestyles. Effective assessment and management of plant resources will lead to their application for the improvement of dietary diversity, nutrition, and health care.


Asunto(s)
Etnobotánica , Plantas Comestibles , Plantas Medicinales , Humanos , China , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Medicina Tradicional China , Etnicidad , Encuestas y Cuestionarios , Adulto Joven , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA