Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Res Bull ; : 111053, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173778

RESUMEN

The present study aims to investigate the unknown relationship between inhibitory control and repetitive subconcussion induced by the indirect brain impacts. We enrolled 28 parachuters exposed to repetitive subconcussion (SC) and 27 matched health controls (HC). Parachuters who have completed at least 70 actual parachuting (71-112 times) and at least 1,500 simulated platform jumps (1500-4500 times) were included in the SC group. The SC group had a reduced accuracy rate in both the Stroop congruent and incongruent conditions. Larger N2 and N450 amplitudes were elicited in the frontal regions of the SC group, which indicate compensatory adaptations to the deficit in conflict monitoring. The reduced frontal resting-state EEG complexity in full-band (1-40Hz) may demonstrate the frontal structural damage following the indirect brain impacts of repetitive subconcussion. Pearson correlation analysis showed that in the SC group, the frontal beta-band sample entropy values are positively correlated with the accuracy rate of the Stroop incongruent condition, suggesting the frontal beta-band sample entropy values may serve as potential electrophysiological markers of impaired inhibitory control after indirectly repetitive brain impacts. This study provides the robust evidence that repetitive subconcussion resulting from indirect brain impacts may lead to impairment of inhibitory control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA