Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(27): 17828-17839, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37377093

RESUMEN

State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13CO molecules with N2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13CO + CO rotationally inelastic scattering described in a previously published report (Sun et al., Science, 2020, 369, 307-309). The collisionally excited 13CO molecule products are detected by the same (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13CO + N2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13CO-N2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13CO-N2 potential energy surface for the 1460 cm-1 collision energy studied by experiment. Experimental results for 13CO + N2 are compared with those for 13CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13CO + CO measurements, the primary rainbow maximum in the DCSs for 13CO + N2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13CO-N2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13CO + CO does not appear for 13CO-N2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13CO + N2 trajectories compared to 13CO + CO trajectories, which shows the special 'do-si-do' pathway invoked for 13CO + CO is not effective for 13CO + N2 collisions.

2.
Phys Chem Chem Phys ; 21(18): 9200-9211, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30977479

RESUMEN

Rotationally inelastic scattering of carbon monoxide (CO) with Argon at a collision energy of 700 cm-1 has been investigated by measuring polarization dependent differential scattering cross sections (PDDCSs) for rotationally excited CO molecules using a crossed molecular beam apparatus coupled with velocity-map ion imaging. A simple and robust (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) REMPI (Resonance Enhanced Multi Photon Ionization) scheme is used and images are obtained by setting the VUV light polarization direction parallel or perpendicular to the scattering plane. Clear differences between the images for the two polarizations are observed, indicating strong collision induced alignment of the rotational angular momentum of scattered CO. A direct image analysis procedure as described in our previously published paper (A. G. Suits et al., J. Phys. Chem. A., 2015, 119, 5925), is employed to extract the fully quantum state resolved alignment-free differential cross sections (DCSs) and the state-to-state angle-dependent alignment moments for each final rotational state. The experimental results are compared with advanced theory, in particular with the predictions of CC QM (Close-Coupling Quantum Mechanical) and QCT (Quasi-Classical Trajectory) calculations. The agreement between experiment and theory is generally found to be quite good throughout the entire scattering angle range for all the final states probed, showing the reliability of the experiment and use of the direct extraction method, as well as the accuracy of the potential surface over the studied collision energy range. A classical kinematic apse (hard shell) model was found to be useful in interpreting the measured collision induced alignment moments.

3.
Science ; 369(6501): 307-309, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32675372

RESUMEN

Knowledge of rotational energy transfer (RET) involving carbon monoxide (CO) molecules is crucial for the interpretation of astrophysical data. As of now, our nearly perfect understanding of atom-molecule scattering shows that RET usually occurs by only a simple "bump" between partners. To advance molecular dynamics to the next step in complexity, we studied molecule-molecule scattering in great detail for collision between two CO molecules. Using advanced imaging methods and quasi-classical and fully quantum theory, we found that a synchronous movement can occur during CO-CO collisions, whereby a bump is followed by a move similar to a "do-si-do" in square dancing. This resulted in little angular deflection but high RET to both partners, a very unusual combination. The associated conditions suggest that this process can occur in other molecule-molecule systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA