Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS One ; 19(1): e0296024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206981

RESUMEN

Chronic inflammatory enteropathy (CIE) in dogs, a spontaneous model of human inflammatory bowel disease (IBD), is associated with a high rate of cobalamin deficiency. The etiology of hypocobalaminemia in human IBD and canine CIE remains unknown, and compromised intestinal uptake of cobalamin resulting from ileal cobalamin receptor deficiency has been proposed as a possible cause. Here, we evaluated the intestinal expression of the cobalamin receptor subunits, amnionless (AMN) and cubilin (CUBN), and the basolateral efflux transporter multi-drug resistance protein 1 (MRP1) in 22 dogs with CIE in comparison to healthy dogs. Epithelial CUBN and AMN levels were quantified by confocal laser scanning microscopy using immunohistochemistry in endoscopic ileal biopsies from dogs with (i) CIE and normocobalaminemia, (ii) CIE and suboptimal serum cobalamin status, (iii) CIE and severe hypocobalaminemia, and (iv) healthy controls. CUBN and MRP1 expression was quantified by RT-qPCR. Receptor expression was evaluated for correlation with clinical patient data. Ileal mucosal protein levels of AMN and CUBN as well as mRNA levels of CUBN and MRP1 were significantly increased in dogs with CIE compared to healthy controls. Ileal cobalamin receptor expression was positively correlated with age, clinical disease activity index (CCECAI) score, and lacteal dilation in the ileum, inversely correlated with serum folate concentrations, but was not associated with serum cobalamin concentrations. Cobalamin receptor downregulation does not appear to be the primary cause of hypocobalaminemia in canine CIE. In dogs of older age with severe clinical signs and/or microscopic intestinal lesions, intestinal cobalamin receptor upregulation is proposed as a mechanism to compensate for CIE-associated hypocobalaminemia. These results support oral supplementation strategies in hypocobalaminemic CIE patients.


Asunto(s)
Enfermedades de los Perros , Enfermedades Inflamatorias del Intestino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Deficiencia de Vitamina B 12 , Humanos , Perros , Animales , Vitamina B 12 , Regulación hacia Arriba , Deficiencia de Vitamina B 12/genética , Deficiencia de Vitamina B 12/veterinaria , Enfermedades Inflamatorias del Intestino/patología , Íleon/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de los Perros/genética
2.
Animals (Basel) ; 14(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38254385

RESUMEN

Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is encoded by the bile acid-inducible (bai) operon. We aimed to assess the correlation between P. hiranonis abundance, the abundance of one specific gene of the bai operon (baiCD), and secondary fUBA concentrations. In this retrospective study, 133 fecal samples were analyzed from 24 dogs. The abundances of P. hiranonis and baiCD were determined using qPCR. The concentration of fUBA was measured by gas chromatography-mass spectrometry. The baiCD abundance exhibited a strong positive correlation with secondary fUBA (ρ = 0.7377, 95% CI (0.6461, 0.8084), p < 0.0001). Similarly, there was a strong correlation between P. hiranonis and secondary fUBA (ρ = 0.6658, 95% CI (0.5555, 0.7532), p < 0.0001). Animals displaying conversion of fUBA and lacking P. hiranonis were not observed. These results suggest P. hiranonis is the main converter of primary to secondary bile acids in dogs.

3.
Vet Sci ; 11(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38250937

RESUMEN

While shifts in gut microbiota have been studied in diseased states, the temporal variability of the microbiome in cats has not been widely studied. This study investigated the temporal variability of the feline dysbiosis index (DI) and the abundance of core bacterial groups in healthy adult cats. The secondary aim was to evaluate the relationship between the fecal abundance of Clostridium hiranonis and the fecal concentrations of unconjugated bile acids. A total of 142 fecal samples collected from 17 healthy cats were prospectively included: nine cats with weekly collection over 3 weeks (at least four time points), five cats with monthly collection over 2 months (three time points), and three cats with additional collections for up to 10 months. The DI remained stable within the reference intervals over two months for all cats (Friedman test, p > 0.2), and 100% of the DI values (n = 142) collected throughout the study period remained within the RI. While some temporal individual variation was observed for individual taxa, the magnitude was minimal compared to cats with chronic enteropathy and antibiotic exposure. Additionally, the abundance of Clostridium hiranonis was significantly correlated with the percentage of fecal primary bile acids, supporting its role as a bile acid converter in cats.

4.
Front Vet Sci ; 11: 1401592, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933703

RESUMEN

Feline chronic enteropathies (FCE) are common causes of chronic gastrointestinal signs in cats and include different diseases such as food-responsive enteropathy (FRE), inflammatory bowel diseases (IBD), and low-grade intestinal T-cell lymphoma (LGITL). Although changes in intestinal microbiota and fecal metabolites have been reported in dogs and humans with chronic enteropathy, research in cats has been limited. Therefore, this study aimed to evaluate the fecal microbiota and lipid-related fecal metabolites in cats with FCE to a clinically healthy comparison group (CG). A total of 34 cats with FCE (13 FRE, 15 IBD, and 6 LGITL) and 27 cats in the CG were enrolled in this study. The fecal microbiota was evaluated by the qPCR-based feline Dysbiosis Index (DI). The feline DI in cats with CE (median: 1.3, range: -2.4 to 3.8) was significantly higher (p < 0.0001) compared to CG (median: - 2.3, Range: -4.3 to 2.3), with no difference found among the FCE subgroups. The fecal abundances of Faecalibacterium (p < 0.0001), Bacteroides (p < 0.0001), Fusobacterium (p = 0.0398), Bifidobacterium (p = 0.0004), and total bacteria (p = 0.0337) significantly decreased in cats with FCE. Twenty-seven targeted metabolites were measured by gas chromatography-mass spectrometry, including long-chain fatty acids (LCFAs), sterols, and bile acids (BAs). Fecal concentrations of 5 of 12 LCFAs were significantly increased in cats with FCE compared to CG. Fecal concentrations of zoosterol (p = 0.0109), such as cholesterol (p < 0.001) were also significantly increased in cats with FCE, but those of phytosterols were significantly decreased in this group. No differences in fecal BAs were found between the groups. Although no differences were found between the four groups, the fecal metabolomic pattern of cats with FRE was more similar to that of the CG than to those with IBD or LGITL. This could be explained by the mild changes associated with FRE compared to IBD and LGITL. The study showed changes in intestinal microbiota and alteration of fecal metabolites in FCE cats compared to the CG. Changes in fecal lipids metabolites suggest a dysmetabolism of lipids, including LCFAs, sterols, and unconjugated BAs in cats with CE.

5.
Animals (Basel) ; 13(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766392

RESUMEN

Medium-chain fatty acids (MCFAs) are considered to be interesting energy sources for dogs affected by chronic enteropathies (CE). This study analyzed the clinical scores, fecal microbiota, and metabolomes of 18 CE dogs fed a home-cooked diet (HCD) supplemented with virgin coconut oil (VCO), a source of MCFA, at 10% of metabolizable energy (HCD + VCO). The dogs were clinically evaluated with the Canine Chronic Enteropathy Activity Index (CCECAI) before and at the end of study. Fecal samples were collected at baseline, after 7 days of HCD, and after 30 days of HCD + VCO, for fecal score (FS) assessment, microbial analysis, and determination of bile acids (BA), sterols, and fatty acids (FA). The dogs responded positively to diet change, as shown by the CCECAI improvement (p = 0.001); HCD reduced fecal fat excretion and HCD + VCO improved FS (p < 0.001), even though an increase in fecal moisture occurred due to HCD (p = 0.001). HCD modified fecal FA (C6:0: +79%, C14:0: +74%, C20:0: +43%, C22:0: +58%, C24:0: +47%, C18:3n-3: +106%, C20:4n-6: +56%, and monounsaturated FA (MUFA): -23%, p < 0.05) and sterol profile (coprostanol: -27%, sitostanol: -86%, p < 0.01). VCO increased (p < 0.05) fecal total saturated FA (SFA: +28%, C14:0: +142%, C16:0 +21%, C22:0 +33%) and selected MCFAs (+162%; C10:0 +183%, C12:0 +600%), while reducing (p < 0.05) total MUFA (-29%), polyunsaturated FA (-26%), campesterol (-56%) and phyto-/zoosterols ratio (0.93:1 vs. 0.36:1). The median dysbiosis index was <0 and, together with fecal BA, was not significantly affected by HCD nor by VCO. The HCD diet increased total fecal bacteria (p = 0.005) and the abundance of Fusobacterium spp. (p = 0.028). This study confirmed that clinical signs, and to a lesser extent fecal microbiota and metabolome, are positively influenced by HCD in CE dogs. Moreover, it has been shown that fecal proportions of MCFA increased when MCFAs were supplemented in those dogs. The present results emphasize the need for future studies to better understand the intestinal absorptive mechanism of MCFA in dogs.

6.
Animals (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37685017

RESUMEN

Chronic enteropathy (CE) in cats encompasses food-responsive enteropathy, chronic inflammatory enteropathy (or inflammatory bowel disease), and low-grade intestinal T-cell lymphoma. While alterations in the gut metabolome have been extensively studied in humans and dogs with gastrointestinal disorders, little is known about the specific metabolic profile of cats with CE. As lipids take part in energy storage, inflammation, and cellular structure, investigating the lipid profile in cats with CE is crucial. This study aimed to measure fecal concentrations of various fatty acids, sterols, and bile acids. Fecal samples from 56 cats with CE and 77 healthy control cats were analyzed using gas chromatography-mass spectrometry, targeting 12 fatty acids, 10 sterols, and 5 unconjugated bile acids. Fecal concentrations of nine targeted fatty acids and animal-derived sterols were significantly increased in cats with CE. However, fecal concentrations of plant-derived sterols were significantly decreased in cats with CE. Additionally, an increased percentage of primary bile acids was observed in a subset of cats with CE. These findings suggest the presence of lipid maldigestion, malabsorption, and inflammation in the gastrointestinal tract of cats with CE. Understanding the lipid alterations in cats with CE can provide insights into the disease mechanisms and potential future therapeutic strategies.

7.
Vet Sci ; 10(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756088

RESUMEN

BACKGROUND: There is increasing interest in the use of Bacillus species as probiotics since their spore-forming ability favors their survival in the acidic gastric environment over other probiotic species. The subsequent germination of B. subtilis to their vegetative form allows for their growth in the small intestine and may increase their beneficial effect on the host. B. subtilis strains have also previously been shown to have beneficial effects in humans and production animals, however, no reports are available so far on their use in companion animals. STUDY DESIGN: The goal of this study was therefore to investigate the daily administration of 1 × 109 cfu DE-CA9TM orally per day versus placebo on health parameters, fecal scores, fecal microbiome, fecal metabolomics, as well as serum metabolomics and oxidative stress markers in ten healthy Beagle dogs in a parallel, randomized, prospective, placebo-controlled design over a period of 45 days. RESULTS: DE-CA9TM decreased the oxidative status compared to controls for advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS) and reactive oxygen metabolites (d-ROMS), suggesting an antioxidant effect of the treatment. Fecal metabolomics revealed a significant reduction in metabolites associated with tryptophan metabolism in the DE-CA9TM-treated group. DE-CA9TM also significantly decreased phenylalanine and homocysteine and increased homoserine and threonine levels. Amino acid metabolism was also affected in the serum metabolome, with increased levels of urea and cadaverine, and reductions in N-acetylornithine in DE-CA9TM compared to controls. Similarly, changes in essential amino acids were observed, with a significant increase in tryptophan and lysine levels and a decrease in homocysteine. An increase in serum guanine and deoxyuridine was also detected, with a decrease in beta-alanine in the animals that ingested DE-CA9TM. CONCLUSIONS: Data generated throughout this study suggest that the daily administration of 1 × 109 cfu of DE-CA9TM in healthy Beagle dogs is safe and does not affect markers of general health and fecal scores. Furthermore, DE-CA9TM administration had a potential positive effect on some serum markers of oxidative stress, and protein and lipid metabolism in serum and feces.

8.
Animals (Basel) ; 13(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627387

RESUMEN

DNA shotgun sequencing is an untargeted approach for identifying changes in relative abundances, while qPCR allows reproducible quantification of specific bacteria. The canine dysbiosis index (DI) assesses the canine fecal microbiota by using a mathematical algorithm based on qPCR results. We evaluated the correlation between qPCR and shotgun sequencing using fecal samples from 296 dogs with different clinical phenotypes. While significant correlations were found between qPCR and sequencing, certain taxa were only detectable by qPCR and not by sequencing. Based on sequencing, less than 2% of bacterial species (17/1190) were consistently present in all healthy dogs (n = 76). Dogs with an abnormal DI had lower alpha-diversity compared to dogs with normal DI. Increases in the DI correctly predicted the gradual shifts in microbiota observed by sequencing: minor changes (R = 0.19, DI < 0 with any targeted taxa outside the reference interval, RI), mild-moderate changes (R = 0.24, 0 < DI < 2), and significant dysbiosis (R = 0.54, 0.73, and 0.91 for DI > 2, DI > 5, and DI > 8, respectively), compared to dogs with a normal DI (DI < 0, all targets within the RI), as higher R-values indicated larger dissimilarities. In conclusion, the qPCR-based DI is an effective indicator of overall microbiota shifts observed by shotgun sequencing in dogs.

9.
Animals (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35158655

RESUMEN

The long-term impact of antibiotics on the serum and fecal metabolome of kittens has not yet been investigated. Therefore, the objective of this study was to evaluate the serum and fecal metabolome of kittens with an upper respiratory tract infection (URTI) before, during, and after antibiotic treatment and compare it with that of healthy control cats. Thirty 2-month-old cats with a URTI were randomly assigned to receive either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days, and 15 cats of similar age were enrolled as controls. Fecal samples were collected on days 0, 20/28, 60, 120, and 300, while serum was collected on days 0, 20/28, and 300. Untargeted and targeted metabolomic analyses were performed on both serum and fecal samples. Seven metabolites differed significantly in antibiotic-treated cats compared to controls on day 20/28, with two differing on day 60, and two on day 120. Alterations in the pattern of serum amino acids, antioxidants, purines, and pyrimidines, as well as fecal bile acids, sterols, and fatty acids, were observed in antibiotic-treated groups that were not observed in control cats. However, the alterations caused by either amoxicillin/clavulanic acid or doxycycline of the fecal and serum metabolome were only temporary and were resolved by 10 months after their withdrawal.

10.
Sci Rep ; 12(1): 12977, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902689

RESUMEN

Dysbiosis and perturbations of fecal metabolic profiles have been reported in dogs with inflammatory bowel disease. Currently the incidence of dysbiosis and the fecal metabolomic profile in Yorkshire Terriers with chronic enteropathy (YTE) and the effects of treatment are unknown. This prospective observational study analyzed the dysbiosis index (DI) and fecal bile acid, sterol and fatty acid profiles in 14 Yorkshire Terriers with active YTE, 11 dogs in clinical remission, and 26 healthy Yorkshire Terriers. YTE was associated with dysbiosis and a significant increase in fatty acids (docosanoate, p = 0.002; gondoate, p = 0.026; erucate, p < 0.001; nervonate, p < 0.001; linolenate, p < 0.001), and plant sterols (campesterol, p < 0.001; brassicasterol, p = 0.024). The abundances of Fusobacterium (p < 0.001) and Cl. hiranonis (p = 0.018) and the concentrations of the secondary bile acid ursodeoxycholic acid (p = 0.033) and the plant sterol sitostanol (p = 0.003) were significantly decreased compared to healthy dogs. Dysbiosis, abundances of Fusobacterium, Cl. hiranonis and fecal concentrations of bile acids and sterols did not recover after treatment, while fecal fatty acid concentrations decreased in treated dogs. YTE is associated with dysbiosis and changes in bile acid, fatty acid, and sterol metabolism. These changes only recovered partially despite clinical remission. They might be breed-specific and involved in the pathogenesis of YTE.


Asunto(s)
Enfermedades de los Perros , Enfermedades Inflamatorias del Intestino , Animales , Ácidos y Sales Biliares/uso terapéutico , Enfermedades de los Perros/metabolismo , Perros , Disbiosis/microbiología , Ácidos Grasos/uso terapéutico , Heces/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Esteroles
11.
J Feline Med Surg ; 24(6): e1-e12, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266809

RESUMEN

OBJECTIVES: Previous studies have identified various bacterial taxa that are altered in cats with chronic enteropathies (CE) vs healthy cats. Therefore, the aim of this study was to develop a targeted quantitative molecular method to evaluate the fecal microbiota of cats. METHODS: Fecal samples from 80 client-owned healthy cats and 68 cats with CE were retrospectively evaluated. A panel of quantitative PCR (qPCR) assays was used to measure the fecal abundance of total bacteria and seven bacterial taxa: Bacteroides, Bifidobacterium, Clostridium hiranonis, Escherichia coli, Faecalibacterium, Streptococcus and Turicibacter. The nearest centroid classifier algorithm was used to calculate a dysbiosis index (DI) based on these qPCR abundances. RESULTS: The abundances of total bacteria, Bacteroides, Bifidobacterium, C hiranonis, Faecalibacterium and Turicibacter were significantly decreased, while those of E coli and Streptococcus were significantly increased in cats with CE (P <0.027 for all). The DI in cats with CE was significantly higher compared with healthy cats (P <0.001). When the cut-off value of the DI was set at 0, it provided 77% (95% confidence interval [CI] 66-85) sensitivity and 96% (95% CI 89-99) specificity to differentiate the microbiota of cats with CE from those of healthy cats. Fifty-two of 68 cats with CE had a DI >0. CONCLUSIONS AND RELEVANCE: A qPCR-based DI for assessing the fecal microbiota of cats was established. The results showed that a large proportion of cats with CE had an altered fecal microbiota as evidenced by an increased DI. Prospective studies are warranted to evaluate the utility of this assay for clinical assessment of feline CE.


Asunto(s)
Enfermedades de los Gatos , Enfermedades Inflamatorias del Intestino , Microbiota , Animales , Bacterias , Gatos , Disbiosis/microbiología , Disbiosis/veterinaria , Escherichia coli , Heces/microbiología , Enfermedades Inflamatorias del Intestino/veterinaria , Estudios Retrospectivos
12.
PLoS One ; 16(12): e0253031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34910719

RESUMEN

Antibiotic treatment in early life influences gastrointestinal (GI) microbial composition and function. In humans, the resultant intestinal dysbiosis is associated with an increased risk for certain diseases later in life. The objective of this study was to determine the temporal effects of antibiotic treatment on the GI microbiome of young cats. Fecal samples were collected from cats randomly allocated to receive either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the standard treatment of upper respiratory tract infection. In addition, feces were collected from healthy control cats (CON group;15 cats). All cats were approximately two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. Fecal microbial composition was different on the last day of treatment for AMC cats, and 1 month after the end of antibiotic treatment for DOX cats, compared to CON cats. Species richness was significantly greater in DOX cats compared to CON cats on the last day of treatment. Abundance of Enterobacteriales was increased, and that of Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment compared to CON cats. The abundance of the phylum Proteobacteria was increased in cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only minor differences in abundances between the treatment groups and the control group were present on day 300. Both antibiotics appear to delay the developmental progression of the microbiome, and this effect is more profound during treatment with amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future studies are required to determine if these changes influence microbiome function and whether they have possible effects on disease susceptibility in cats.


Asunto(s)
Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Bacterias , Doxiciclina/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Gatos , Disbiosis/inducido químicamente , Disbiosis/microbiología , Disbiosis/veterinaria , Femenino , Masculino , Factores de Tiempo
13.
Vet Clin Pathol ; 48(3): 469-480, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31556159

RESUMEN

BACKGROUND: A number of domestic rabbit (Oryctolagus cuniculus) breeds exist, and the pet rabbit population consists of a variety of pure- and crossbred animals. However, the reference intervals (RIs) for rabbits are limited by outdated methods and a single-breed source. OBJECTIVE: This study aimed to establish more complete, updated erythrocytic and biochemical RIs for the crossbred pet rabbit population to improve routine diagnostic accuracy in clinical practice, and to examine the effects of crossbreeding on erythrocytic and biochemical parameters. METHODS: Blood specimens were collected from 85 clinically healthy crossbred pet rabbits representing a wide range of breeds. RIs for the erythrocyte indices and 12 chemistry analytes were determined as recommended by the American Society for Veterinary Clinical Pathology guidelines. The results were compared with four widely used RIs. Age and sex differences for all variables were statistically analyzed. RESULTS: The results diverged from the RIs for New Zealand white rabbits, indicating that not all RIs from this species are appropriate for use in exotic animal practices. Breed-associated variations were evident for aspartate amino transferase, alkaline phosphatase, and glucose, while crossbreed effects were found for total protein, albumin, blood urea nitrogen, creatinine, calcium, and phosphate. Statistically significant differences and clinical relevance among age groups were detected for hemoglobin, hematocrit, and creatinine. CONCLUSIONS: Establishing RIs specifically for crossbred pet rabbits is desirable for clinicians treating pet rabbits of various breeds and ages. Age-specific RIs for this population warrants further investigation.


Asunto(s)
Índices de Eritrocitos/veterinaria , Conejos/sangre , Envejecimiento , Animales , Femenino , Hibridación Genética , Masculino , Valores de Referencia , Caracteres Sexuales
14.
Poult Sci ; 98(4): 1658-1663, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481344

RESUMEN

The infectious bursal disease (IBD) causes immunosuppression in chicken of all ages and high mortality in young chicken, posing serious threat to poultry industry worldwide. One promising strategy for preventing this highly contagious disease is using recombinant subunit vaccine, employing VP2 subviral particles (SVP) as epitomic antigen. Analytical techniques of viral-like particles such as SDS-PAGE, western blot, or high-performance size-exclusion chromatography have been widely applied, but mostly unsatisfactory. In the present study, a simple, fast and cost-effective capillary zone electrophoresis (CZE) method with UV-detection was developed to analyze purified IBDV-SVP (expressed by Escherichia coli system) using commercial monoclonal antibody (mAb) against VP2. To find satisfying CZE conditions, injection mode, separation voltage, and separation buffer were explored. Through the modified CZE, mAb and SVP could be well separated and shown distinct peaks in the electropherogram. Furthermore, to determine the stoichiometry, the area of the mAb peak versus SVP/mAb binding ratio was plotted and indicated that 2 or 3 receptor molecules were bound per SVP. The purity and integrity of SVP and the interactions between SVP and mAb could be analyzed by the developed simple CZE-UV method in less than half hour. This CZE-UV method proved to be a valuable and useful tool in detection, characterization, and quantification of IBDV-SVP and the mAb, offering potential applications of in-process quality control of vaccine production, surveillance of serum antibody produced against IBDV infection, or vaccine immunization.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Electroforesis Capilar/métodos , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Virión/aislamiento & purificación , Electroforesis Capilar/instrumentación , Escherichia coli/genética , Rayos Ultravioleta
15.
Front Microbiol ; 10: 2430, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749775

RESUMEN

Potential synergism between florfenicol (FF) and thiamphenicol (TAP) was investigated for in vitro efficacy against Actinobacillus pleuropneumoniae and/or Pasteurella multocida as well as in vivo efficacy in swine. Among isolates of A. pleuropneumoniae (n = 58) and P. multocida (n = 79) from pigs in Taiwan that were tested, high percentages showed resistance to FF (52 and 53%, respectively) and TAP (57 and 53%, respectively). Checkerboard microdilution assay indicated that synergism [fractional inhibitory concentration index (FICI) ≤ 0.5] was detected in 17% of A. pleuropneumoniae (all serovar 1) and 24% of P. multocida isolates. After reconfirming the strains showing FICI ≤ 0.625 with time kill assay, the synergism increased to around 32% against both bacteria and the number could further increase to 40% against resistant A. pleuropneumoniae and 65% against susceptible P. multocida isolates. A challenge-treatment trial in pigs with P. multocida showed that the FF + TAP dosage at ratios correspondent to their MIC deduction was equally effective to the recommended dosages. Further on the combination, the resistant mutation frequency is very low when A. pleuropneumoniae is grown with FF + TAP and similar to the exposure to sub-inhibitory concentration of FF or TAP alone. The degree of minimum inhibitory concentration (MIC) reduction in FF could reach 75% (1/4 MIC) or more (up to 1/8 MIC for P. multocida, 1/16 for A. pleuropneumoniae) when combined with 1/4 MIC of TAP (or 1/8 for A. pleuropneumoniae). The synergism or FICI ≤ 0.625 of FF with oxytetracycline (47%), doxycycline (69%), and erythromycin (56%) was also evident, and worth further investigation for FF as a central modulator facilitating synergistic effects with these antimicrobials. Taken together, synergistic FF + TAP combination was effective against swine pulmonary isolates of A. pleuropneumoniae and P. multocida both in vitro and in vivo. Thus, this study may offer a potential alternative for the treatment of A. pleuropneumoniae and P. multocida infections and has the potential to greatly reduce drug residues and withdrawal time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA