Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198713

RESUMEN

Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging. Herein we prepared a class of semiconducting III-V-derived van der Waals crystals, specifically the HxA1-xBX form, exhibiting memristive characteristics. To identify candidates for the material synthesis, we conducted a systematic high-throughput screening, leading us to 44 prospective III-V candidates; of these, we successfully synthesized ten, including nitrides, phosphides, arsenides and antimonides. These materials exhibited intriguing characteristics such as electrochemical polarization and memristive phenomena while retaining their semiconductive attributes. We demonstrated the gate-tunable synaptic and logic functions within single-gate memtransistors, capitalizing on the synergistic interplay between the semiconducting and memristive properties of our two-dimensional crystals. Our approach guides the discovery of van der Waals materials with unique properties from unconventional crystal symmetries.

2.
Small ; 14(47): e1803386, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30307700

RESUMEN

The ability to create graphene nanoribbons with atomically sharp edges is important for various graphene applications because these edges significantly influence the overall electronic properties and support unique magnetic edge states. The discovery of graphene self-folding induced by traveling wave excitation through atomic force microscope scanning under a normal force of less than 15 nN is reported. Most remarkably, the crystallographic direction of self-folding may be either along a chosen direction defined by the scan line or along the zigzag or armchair direction in the presence of a pre-existing crack in the vicinity. The crystalline direction of the atomically sharp edge is confirmed via careful lateral force microscopy measurements. Multilayer nanoribbons with lateral dimensions of a few tens of nanometers are realized on the same graphene sheet with different folding types (e.g., z-type or double parallel). Molecular dynamics simulations reveal the folding dynamics and suggest a monotonic increase of the folded area with the applied normal force. This method may be extended to other 2D van der Waals materials and lead to nanostructures that exhibit novel edge properties without the chemical instability that typically hinders applications of etched or patterned graphene nanostructures.

3.
Phys Rev Lett ; 120(15): 157001, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756903

RESUMEN

Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P6/m-Si_{6} can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P6/m-NaSi_{6}, which is predicted through first-principles study at high pressure. We identify that both P6/m-NaSi_{6} and P6/m-Si_{6} are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The prediction of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices.

4.
Phys Chem Chem Phys ; 18(24): 16361-6, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27257641

RESUMEN

For practical applications of two-dimensional topological insulators, large band gaps and Dirac states within the band gap are desirable because they allow for device operation at room temperature and quantum transport without dissipation. Based on first-principles density functional calculations, we report the tunability of the electronic structure by strain engineering in quasi-one-dimensional nanoribbons of transition metal dichalcogenides with a 1T' structure, MoX2 with X = (S, Se, Te). We find that both the band gaps and Dirac points in 1T'-MoX2 can be engineered by applying an external strain, thereby leading to a single Dirac cone within the bulk band gap. Considering the gap size and the location of the Dirac point, we suggest that, among 1T'-MoX2 nanoribbons, MoSe2 is the most suitable candidate for quantum spin Hall (QSH) devices.

5.
Adv Sci (Weinh) ; 11(32): e2404035, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899829

RESUMEN

Threshold-switching devices based on amorphous chalcogenides are considered for use as selector devices in 3D crossbar memories. However, the fundamental understanding of amorphous chalcogenide is hindered owing to the complexity of the local structures and difficulties in the trap analysis of multinary compounds. Furthermore, after threshold switching, the local structures gradually evolve to more stable energy states owing to the unstable homopolar bonds. Herein, based on trap analysis, DFT simulations, and operando XPS analysis, it is determined that the threshold switching mechanism is deeply related to the charged state of Se-Se homopolar defects. A threshold switching device is demonstrated with an excellent performance through the modification of the local structure via the addition of alloying elements and investigating the time-dependent trap evolution. The results concerning the trap dynamics of local atomic structures in threshold switching phenomena may be used to improve the design of amorphous chalcogenides.

6.
Nanomicro Lett ; 13(1): 211, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34657227

RESUMEN

Ultrathin film-based transparent conductive oxides (TCOs) with a broad work function (WF) tunability are highly demanded for efficient energy conversion devices. However, reducing the film thickness below 50 nm is limited due to rapidly increasing resistance; furthermore, introducing dopants into TCOs such as indium tin oxide (ITO) to reduce the resistance decreases the transparency due to a trade-off between the two quantities. Herein, we demonstrate dopant-tunable ultrathin (≤ 50 nm) TCOs fabricated via electric field-driven metal implantation (m-TCOs; m = Ni, Ag, and Cu) without compromising their innate electrical and optical properties. The m-TCOs exhibit a broad WF variation (0.97 eV), high transmittance in the UV to visible range (89-93% at 365 nm), and low sheet resistance (30-60 Ω cm-2). Experimental and theoretical analyses show that interstitial metal atoms mainly affect the change in the WF without substantial losses in optical transparency. The m-ITOs are employed as anode or cathode electrodes for organic light-emitting diodes (LEDs), inorganic UV LEDs, and organic photovoltaics for their universal use, leading to outstanding performances, even without hole injection layer for OLED through the WF-tailored Ni-ITO. These results verify the proposed m-TCOs enable effective carrier transport and light extraction beyond the limits of traditional TCOs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA