Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
EMBO J ; 32(12): 1761-77, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23685359

RESUMEN

Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Animales , Aurora Quinasas , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/genética
2.
EMBO J ; 30(12): 2431-44, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21602789

RESUMEN

Regulated alternative polyadenylation is an important feature of gene expression, but how gene transcription rate affects this process remains to be investigated. polo is a cell-cycle gene that uses two poly(A) signals in the 3' untranslated region (UTR) to produce alternative messenger RNAs that differ in their 3'UTR length. Using a mutant Drosophila strain that has a lower transcriptional elongation rate, we show that transcription kinetics can determine alternative poly(A) site selection. The physiological consequences of incorrect polo poly(A) site choice are of vital importance; transgenic flies lacking the distal poly(A) signal cannot produce the longer transcript and die at the pupa stage due to a failure in the proliferation of the precursor cells of the abdomen, the histoblasts. This is due to the low translation efficiency of the shorter transcript produced by proximal poly(A) site usage. Our results show that correct polo poly(A) site selection functions to provide the correct levels of protein expression necessary for histoblast proliferation, and that the kinetics of RNA polymerase II have an important role in the mechanism of alternative polyadenylation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Poli A/metabolismo , Poliadenilación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal/genética , Regiones no Traducidas 3'/genética , Animales , Animales Modificados Genéticamente , Proliferación Celular , Supervivencia Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Variación Genética/genética , Cinética , Poli A/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Polimerasa II/biosíntesis , ARN Polimerasa II/genética
3.
J Cell Sci ; 125(Pt 3): 576-83, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22389397

RESUMEN

Correct chromosome segregation during cell division requires bi-orientation at the mitotic spindle. Cells possess mechanisms to prevent and correct inappropriate chromosome attachment. Sister kinetochores assume a 'back-to-back' geometry on chromosomes that favors amphitelic orientation but the regulation of this process and molecular components are unknown. Abnormal chromosome-spindle interactions do occur but are corrected through the activity of Aurora B, which destabilizes erroneous attachments. Here, we address the role of Drosophila POLO in chromosome-spindle interactions and show that, unlike inhibition of its activity, depletion of the protein results in bipolar spindles with most chromosomes forming stable attachments with both sister kinetochores bound to microtubules from the same pole in a syntelic orientation. This is partly the result of impaired localization and activity of Aurora B but also of an altered centromere organization with abnormal distribution of centromeric proteins and shorter interkinetochore distances. Our results suggests that POLO is required to promote amphitelic attachment and chromosome bi-orientation by regulating both the activity of the correction mechanism and the architecture of the centromere.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Animales , Aurora Quinasas , Puntos de Control del Ciclo Celular , Línea Celular , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Microscopía Fluorescente , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN
4.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38948877

RESUMEN

Faithfull cell division relies on mitotic chromosomes becoming bioriented with each pair of sister kinetochores bound to microtubules oriented toward opposing spindle poles. Erroneous kinetochore-microtubule attachments often form during early mitosis, but are destabilized through the phosphorylation of outer kinetochore proteins by centromeric AURORA B kinase (ABK) and centrosomal AURORA A kinase (AAK), thus allowing for re-establishment of attachments until biorientation is achieved. MPS1-mediated phosphorylation of NDC80 has also been shown to directly weaken the kinetochore-microtubule interface in yeast. In human cells, MPS1 has been proposed to transiently accumulate at end-on attached kinetochores and phosphorylate SKA3 to promote microtubule release. Whether MPS1 directly targets NDC80 and/or promotes the activity of AURORA kinases in metazoans remains unclear. Here, we report a novel mechanism involving communication between kinetochores and centrosomes, wherein MPS1 acts upstream of AAK to promote error correction. MPS1 on pole-proximal kinetochores phosphorylates the C-lobe of AAK thereby increasing its activation at centrosomes. This proximity-based activation ensures the establishment of a robust AAK activity gradient that locally destabilizes mal-oriented kinetochores near spindle poles. Accordingly, MPS1 depletion from Drosophila cells causes severe chromosome misalignment and erroneous kinetochore-microtubule attachments, which can be rescued by tethering either MPS1 or constitutively active AAK mutants to centrosomes. Proximity-based activation of AAK by MPS1 also occurs in human cells to promote AAK-mediated phosphorylation of the NDC80 N-terminal tail. These findings uncover an MPS1-AAK cross-talk that is required for efficient error correction, showcasing the ability of kinetochores to modulate centrosome outputs to ensure proper chromosome segregation.

5.
EMBO J ; 28(3): 234-47, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19131964

RESUMEN

Sgt1 was described previously in yeast and humans to be a Hsp90 co-chaperone and required for kinetochore assembly. We have identified a mutant allele of Sgt1 in Drosophila and characterized its function. Mutations in sgt1 do not affect overall kinetochore assembly or spindle assembly checkpoint. sgt1 mutant cells enter less frequently into mitosis and arrest in a prometaphase-like state. Mutations in sgt1 severely compromise the organization and function of the mitotic apparatus. In these cells, centrioles replicate but centrosomes fail to mature, and pericentriolar material components do not localize normally resulting in highly abnormal spindles. Interestingly, a similar phenotype was described previously in Hsp90 mutant cells and correlated with a decrease in Polo protein levels. In sgt1 mutant neuroblasts, we also observe a decrease in overall levels of Polo. Overexpression of the kinase results in a substantial rescue of the centrosome defects; most cells form normal bipolar spindles and progress through mitosis normally. Taken together, these findings suggest that Sgt1 is involved in the stabilization of Polo allowing normal centrosome maturation, entry and progression though mitosis.


Asunto(s)
Centrosoma/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Supervivencia Celular , Centriolos/metabolismo , Proteínas de Drosophila/química , Estabilidad de Enzimas , Cinetocoros/metabolismo , Mitosis , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Mutación/genética , Neuronas/citología , Neuronas/enzimología , Fenotipo , Transporte de Proteínas , Huso Acromático/metabolismo , Fracciones Subcelulares/metabolismo
6.
Chromosoma ; 120(1): 83-96, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20862486

RESUMEN

Centromeres are specialized chromosomal domains that direct mitotic kinetochore assembly and are defined by the presence of CENP-A (CID in Drosophila) and CENP-C. While the role of CENP-A appears to be highly conserved, functional studies in different organisms suggest that the precise role of CENP-C in kinetochore assembly is still under debate. Previous studies in vertebrate cells have shown that CENP-C inactivation causes mitotic delay, chromosome missegregation, and apoptosis; however, in Drosophila, the role of CENP-C is not well-defined. We have used RNA interference depletion in S2 cells to address this question and we find that depletion of CENP-C causes a kinetochore null phenotype, and consequently, the spindle checkpoint, kinetochore-microtubule interactions, and spindle size are severely misregulated. Importantly, we show that CENP-C is required for centromere identity as CID, MEI-S332, and chromosomal passenger proteins fail to localize in CENP-C depleted cells, suggesting a tight communication between the inner kinetochore proteins and centromeres. We suggest that CENP-C might fulfill the structural roles of the human centromere-associated proteins not identified in Drosophila.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Animales , Línea Celular , Proteínas Cromosómicas no Histona/genética , Cromosomas de Insectos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Interferencia de ARN
7.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36200976

RESUMEN

Barbosa et al. discuss work by Mussachio and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202206131) finding that conformational changes in the DYNEIN adaptor SPINDLY can precisely control DYNEIN activation at kinetochores.


Asunto(s)
Proteínas de Ciclo Celular , División Celular , Dineínas , Huso Acromático , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo
8.
Front Cell Dev Biol ; 10: 787294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155423

RESUMEN

During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.

9.
Curr Biol ; 32(20): 4411-4427.e8, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36113470

RESUMEN

Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Polaridad Celular/fisiología , Constricción , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Drosophila melanogaster/metabolismo
10.
Chromosoma ; 119(4): 405-13, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20354862

RESUMEN

Error-free chromosome segregation requires that all chromosomes biorient on the mitotic spindle. The motor protein Centromere-associated protein E (CENP-E) facilitates chromosome congression by mediating the lateral sliding of sister chromatids along existing K-fibers, while the mitotic kinase Aurora B detaches kinetochore-microtubule interactions that are not bioriented. Whether these activities cooperate to promote efficient chromosome biorientation and timely anaphase onset is not known. We here show that the chromosomes that fail to congress after CENP-E depletion displayed high centromeric Aurora B kinase activity. This activity destabilized spindle pole proximal kinetochore-microtubule interactions resulting in a checkpoint-dependent mitotic delay that allowed CENP-E-independent chromosome congression, thus reducing chromosome segregation errors. This shows that Aurora B keeps the mitotic checkpoint active by destabilizing kinetochore fibers of polar chromosomes to permit chromosome congression in CENP-E-compromised cells and implies that this kinase normally prevents pole proximal syntelic attachments to allow CENP-E-mediated congression of mono-oriented chromosomes.


Asunto(s)
Anafase/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Humanos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Células HeLa , Humanos , Cinetocoros/metabolismo , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Mitosis , ARN Interferente Pequeño , Huso Acromático/metabolismo
11.
PLoS Biol ; 6(8): e207, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18752348

RESUMEN

Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II-depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II-depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule-kinetochore attachments by allowing proper activation of Aurora B kinase.


Asunto(s)
Centrómero/fisiología , ADN-Topoisomerasas de Tipo II/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Activación Enzimática , Células HeLa , Humanos , Cinetocoros/fisiología , Microtúbulos/fisiología , Interferencia de ARN/fisiología , Intercambio de Cromátides Hermanas/fisiología , Huso Acromático/fisiología , Inhibidores de Topoisomerasa II
12.
Biol Open ; 10(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33948620

RESUMEN

Aneuploidy has been strongly linked to cancer development, and published evidence has suggested that aneuploidy can have an oncogenic or a tumor suppressor role depending on the tissue context. Using the Drosophila midgut as a model, we have recently described that adult intestinal stem cells (ISCs), do not activate programmed cell death upon aneuploidy induction, leading to an increase in ISC proliferation rate, and tissue dysplasia. How aneuploidy impacts ISCs in intestinal tumorigenic models remains to be investigated, and it represents a very important biological question to address since data from multiple in vivo models suggests that the cellular impact of aneuploidy is highly dependent on the cellular and tissue context. Using manipulation of different genetic pathways such as EGFR, JAK-STAT and Notch that cause dysplastic phenotypes in the Drosophila gut, we found that concomitant aneuploidy induction by impairment of the spindle assembly checkpoint (SAC) consistently leads to a more severe progression of intestinal dysplasia or tumorigenesis. This is characterized by an accumulation of progenitor cells, high tissue cell density and higher stem cell proliferation rates, revealing an additive or synergistic effect depending on the misregulated pathway in which aneuploidy was induced. Thus, our data suggests that in the Drosophila gut, both dysplasia and tumorigenic phenotypes can be fueled by inducing genomic instability of resident stem cells.


Asunto(s)
Aneuploidia , Carcinogénesis/genética , Drosophila/genética , Neoplasias Intestinales/genética , Lesiones Precancerosas/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Intestinos/metabolismo , Fenotipo , Células Madre/metabolismo
13.
Curr Biol ; 17(17): 1489-97, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17702574

RESUMEN

The partially conserved Mad3/BubR1 protein is required during mitosis for the spindle assembly checkpoint (SAC). In meiosis, depletion causes an accelerated transit through prophase I and missegregation of achiasmate chromosomes in yeast [1], whereas in mice, reduced dosage leads to severe chromosome missegregation [2]. These observations indicate a meiotic requirement for BubR1, but its mechanism of action remains unknown. We identified a viable bubR1 allele in Drosophila resulting from a point mutation in the kinase domain that retains mitotic SAC activity. In males, we demonstrate a dose-sensitive requirement for BubR1 in maintaining sister-chromatid cohesion at anaphase I, whereas the mutant BubR1 protein localizes correctly. In bubR1 mutant females, we find that both achiasmate and chiasmate chromosomes nondisjoin mostly equationally consistent with a defect in sister-chromatid cohesion at late anaphase I or meiosis II. Moreover, mutations in bubR1 cause a consistent increase in pericentric heterochromatin exchange frequency, and although the synaptonemal complex is set up properly during transit through the germarium, it is disassembled prematurely in prophase by stage 1. Our results demonstrate that BubR1 is essential to maintain sister-chromatid cohesion during meiotic progression in both sexes and for normal maintenance of SC in females.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromátides/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Complejo Sinaptonémico/fisiología , Animales , Centrómero/fisiología , Femenino , Masculino , No Disyunción Genética/fisiología , Intercambio de Cromátides Hermanas/fisiología
14.
Biochem Soc Trans ; 38(6): 1667-75, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118145

RESUMEN

The kinetochore is a complex molecular machine that serves as the interface between sister chromatids and the mitotic spindle. The kinetochore assembles at a particular chromosomal locus, the centromere, which is essential to maintain genomic stability during cell division. The kinetochore is a macromolecular puzzle of subcomplexes assembled in a hierarchical manner and fulfils three main functions: microtubule attachment, chromosome and sister chromatid movement, and regulation of mitotic progression though the spindle assembly checkpoint. In the present paper we compare recent results on the assembly, organization and function of the kinetochore in human and Drosophila cells and conclude that, although essential functions are highly conserved, there are important differences that might help define what is a minimal chromosome segregation machinery.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica , Drosophila melanogaster/genética , Cinetocoros/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Células HeLa , Humanos , Microtúbulos/metabolismo , Mapeo de Interacción de Proteínas , Huso Acromático/metabolismo
15.
Mol Biol Cell ; 18(3): 850-63, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17182852

RESUMEN

The spindle assembly checkpoint is essential to maintain genomic stability during cell division. We analyzed the role of the putative Drosophila Mad2 homologue in the spindle assembly checkpoint and mitotic progression. Depletion of Mad2 by RNAi from S2 cells shows that it is essential to prevent mitotic exit after spindle damage, demonstrating its conserved role. Mad2-depleted cells also show accelerated transit through prometaphase and premature sister chromatid separation, fail to form metaphases, and exit mitosis soon after nuclear envelope breakdown with extensive chromatin bridges that result in severe aneuploidy. Interestingly, preventing Mad2-depleted cells from exiting mitosis by a checkpoint-independent arrest allows congression of normally condensed chromosomes. More importantly, a transient mitotic arrest is sufficient for Mad2-depleted cells to exit mitosis with normal patterns of chromosome segregation, suggesting that all the associated phenotypes result from a highly accelerated exit from mitosis. Surprisingly, if Mad2-depleted cells are blocked transiently in mitosis and then released into a media containing a microtubule poison, they arrest with high levels of kinetochore-associated BubR1, properly localized cohesin complex and fail to exit mitosis revealing normal spindle assembly checkpoint activity. This behavior is specific for Mad2 because BubR1-depleted cells fail to arrest in mitosis under these experimental conditions. Taken together our results strongly suggest that Mad2 is exclusively required to delay progression through early stages of prometaphase so that cells have time to fully engage the spindle assembly checkpoint, allowing a controlled metaphase-anaphase transition and normal patterns of chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Metafase , Huso Acromático/metabolismo , Anafase , Animales , Cinetocoros/metabolismo , Proteínas Mad2 , Fenotipo , Interferencia de ARN , Intercambio de Cromátides Hermanas
16.
J Cell Biol ; 219(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31913420

RESUMEN

The spindle assembly checkpoint (SAC) relies on the recruitment of Mad1-C-Mad2 to unattached kinetochores but also on its binding to Megator/Tpr at nuclear pore complexes (NPCs) during interphase. However, the molecular underpinnings controlling the spatiotemporal redistribution of Mad1-C-Mad2 as cells progress into mitosis remain elusive. Here, we show that activation of Mps1 during prophase triggers Mad1 release from NPCs and that this is required for kinetochore localization of Mad1-C-Mad2 and robust SAC signaling. We find that Mps1 phosphorylates Megator/Tpr to reduce its interaction with Mad1 in vitro and in Drosophila cells. Importantly, preventing Mad1 from binding to Megator/Tpr restores Mad1 accumulation at kinetochores, the fidelity of chromosome segregation, and genome stability in larval neuroblasts of mps1-null mutants. Our findings demonstrate that the subcellular localization of Mad1 is tightly coordinated with cell cycle progression by kinetochore-extrinsic activity of Mps1. This ensures that both NPCs in interphase and kinetochores in mitosis can generate anaphase inhibitors to efficiently preserve genomic stability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cromosomas de Insectos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Mitosis , Células-Madre Neurales/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Aneuploidia , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Células HeLa , Humanos , Interfase , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Tiempo
17.
J Cell Biol ; 157(5): 749-60, 2002 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-12034769

RESUMEN

Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Drosophila/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Alelos , Animales , Células Cultivadas , Cromosomas/metabolismo , Drosophila , Proteínas de Drosophila/genética , Dineínas/análisis , Proteínas de Insectos/análisis , Proteínas de Insectos/metabolismo , Cinetocoros/química , Cinetocoros/ultraestructura , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/química , Microtúbulos/ultraestructura , Mitosis/fisiología , Mutación , Fenotipo , ARN Bicatenario/farmacología , Huso Acromático/química , Huso Acromático/ultraestructura
18.
Cell Cycle ; 18(16): 1813-1823, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31242809

RESUMEN

The development of multicellular organisms and the maintenance of its tissues relies on mitosis. However, this process represents a major challenge for genomic stability as each time a cell division occurs there are multiple steps where errors can lead to an abnormal chromosomal content in daughter cells - aneuploidy. Aneuploidy was first postulated to act as a tumour promoting agent over one century ago. Since then, we have learned to appreciate the complexity involving the cellular responses to aneuploidy and to value the importance of models where aneuploidy is induced in vivo and in a cell-type specific manner. Recent data suggests that stem cells evolved a distinct response to aneuploidy, being able to survive and proliferate as aneuploid. Since stem cells are the main cells responsible for tissue renewal, it is of the utmost importance to place the spotlight on stem cells within the aneuploidy field. Here, we briefly review some of the biological mechanisms implicated in aneuploidy, the relationship between aneuploidy and tissue pathologies, and summarize the most recent findings in Drosophila on how tissue stem cells respond to aneuploidy. Once we understand how stem cell behavior is impacted by aneuploidy, we might be able to better describe the complicated link between aneuploidy and tumourigenesis.


Asunto(s)
Aneuploidia , Transformación Celular Neoplásica/genética , Células Madre/metabolismo , Animales , Proliferación Celular/genética , Supervivencia Celular/genética , Inestabilidad Cromosómica , Drosophila/citología , Drosophila/genética , Humanos , Mitosis/genética
19.
Cell Rep ; 26(2): 293-301.e7, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625311

RESUMEN

Apical-basal polarity is a common trait that underlies epithelial function. Although the asymmetric distribution of cortical polarity proteins works in a functioning equilibrium, it also retains plasticity to accommodate cell division, during which the basolateral determinant Lgl is released from the cortex. Here, we investigated how Lgl restores its cortical localization to maintain the integrity of dividing epithelia. We show that cytoplasmic Lgl is reloaded to the cortex at mitotic exit in Drosophila epithelia. Lgl cortical localization depends on protein phosphatase 1, which dephosphorylates Lgl on the serines phosphorylated by aPKC and Aurora A kinases through a mechanism that relies on the regulatory subunit Sds22 and a PP1-interacting RVxF motif of Lgl. This mechanism maintains epithelial polarity and is of particular importance at mitotic exit to couple Lgl cortical reloading with the polarization of the apical domain. Hence, PP1-mediated dephosphorylation of Lgl preserves the apical-basal organization of proliferative epithelia.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Aurora Quinasa A/metabolismo , Sitios de Unión , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliales/metabolismo , Mitosis , Unión Proteica , Transporte de Proteínas , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
20.
Mol Cell Biol ; 39(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31085682

RESUMEN

Alternative polyadenylation generates transcriptomic diversity, although the physiological impact and regulatory mechanisms involved are still poorly understood. The cell cycle kinase Polo is controlled by alternative polyadenylation in the 3' untranslated region (3'UTR), with critical physiological consequences. Here, we characterized the molecular mechanisms required for polo alternative polyadenylation. We identified a conserved upstream sequence element (USE) close to the polo proximal poly(A) signal. Transgenic flies without this sequence show incorrect selection of polo poly(A) signals with consequent downregulation of Polo expression levels and insufficient/defective activation of Polo kinetochore targets Mps1 and Aurora B. Deletion of the USE results in abnormal mitoses in neuroblasts, revealing a role for this sequence in vivo We found that Hephaestus binds to the USE RNA and that hephaestus mutants display defects in polo alternative polyadenylation concomitant with a striking reduction in Polo protein levels, leading to mitotic errors and aneuploidy. Bioinformatic analyses show that the USE is preferentially localized upstream of noncanonical polyadenylation signals in Drosophila melanogaster genes. Taken together, our results revealed the molecular mechanisms involved in polo alternative polyadenylation, with remarkable physiological functions in Polo expression and activity at the kinetochores, and disclosed a new in vivo function for USEs in Drosophila melanogaster.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Secuencia de Bases , Secuencia Conservada , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Mitosis , Poliadenilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA