Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104958, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380083

RESUMEN

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Asunto(s)
Prochlorococcus , Agua de Mar , Transportadoras de Casetes de Unión a ATP/metabolismo , Prochlorococcus/metabolismo , Urea/metabolismo , Agua de Mar/microbiología
2.
Gen Comp Endocrinol ; 261: 97-103, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29481768

RESUMEN

Neuropeptide B (NPB) is an endogenous ligand for the orphan G protein-coupled receptors NPBWR1 (GPR7) and NPBWR2 (GPR8). Some reports have investigated the role of NPB in the regulation of feeding, energy metabolism and hormone secretion in many species. However, few papers reported the physiological function of NPB in the pig. In this study, we cloned and sequenced the NPB mRNA from a pig, which was found to consist of 123 bases. NPB mRNA expression was detected in central and peripheral tissues by the quantitative fluorescence method. The results showed that NPB mRNA expression was higher in hippocampus, cerebellum, spinal cord, thymus, tonsil, duodenum, cecum, colon, ovary and testis. The distribution of NPB suggested that it may be involved in the regulation of reproductive functions in the pig. Subsequently, the expression and distribution of NPBWR1 and NPBWR2 were found in Leydig cells and ovarian granular cells. We then investigated the direct effect of NPB on pig reproductive cells in vitro. The results showed that different concentrations of NPB (10-12, 10-10, 10-8 and 10-6 M) promoted the secretion of testosterone in Leydig cells in concentration-dependent manner. Different doses of NPB could promote the secretion of progesterone in ovarian granulosa cells in dose-dependent manner. Low concentrations of NPB (10-8 and 10-10 M) promoted estradiol secretion, but high concentrations of NPB (10-6 M) inhibited its secretion. All the results suggested that the NPB/NPBWR1 or NPBWR2 system may play a role in modulating the reproductive activity in the pig.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Neuropéptidos/genética , Neuropéptidos/farmacología , Porcinos/genética , Animales , Secuencia de Bases , Clonación Molecular , Femenino , Gónadas/citología , Masculino , ARN Mensajero/metabolismo , Receptores de Neuropéptido/fisiología , Reproducción/genética , Vías Secretoras/efectos de los fármacos , Porcinos/metabolismo
3.
Mar Genomics ; 69: 101029, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100528

RESUMEN

Bacillus cereus 2-6A, was isolated from the sediments in the hydrothermal area of the Pacific Ocean with a water depth of 2628 m. In this study, we report the whole genome sequence of strain 2-6A and analyze that to understand its metabolic capacities and biosynthesis potential of natural products. The genome of strain 2-6A consists of a circular chromosome of 5,191,018 bp with a GC content of 35.3 mol% and two plasmids of 234,719 bp and 411,441 bp, respectively. Genomic data mining reveals that strain 2-6A has several gene clusters involved in exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs) production and complex polysaccharides degradation. It also possesses a variety of genes for allowing strain 2-6A to cope with osmotic stress, oxidative stress, heat shock, cold shock and heavy metal stress, which could play a vital role in the adaptability of the strain to hydrothermal environments. Gene clusters for secondary metabolite production, such as lasso peptide and siderophore, are also predicted. Therefore, genome sequencing and data mining provide insights into the molecular mechanisms of Bacillus in adapting to hydrothermal deep ocean environments and can facilitate further experimental exploration.


Asunto(s)
Bacillus cereus , Bacillus , Océano Pacífico , Bacillus cereus/genética , Genoma Bacteriano , Bacillus/genética , Mapeo Cromosómico
4.
Mar Genomics ; 63: 100953, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35568403

RESUMEN

Thalassospira sp. SW-3-3 is a bacterial strain isolated from deep seawater of the Pacific Ocean at a water depth of 3112 m. It is a Gram-negative, aerobic, and curved rod-shaped bacterium belonging to the family Thalassospiraceae. In this study, we report the complete genome sequence of strain SW-3-3. It has a circular chromosome with a size of 4,764,478 bp and a G + C content of 54.7%. The genome contains 4296 protein-coding genes, 63 tRNA genes, and 12 rRNA genes. Genomic analysis shows that strain SW-3-3 contains genes and catalytic pathways relevant to phthalate metabolism. Phthalates are well-known emerging contaminants that are harmful to environments and human health. They are chemically stable compounds that are widely used in plastic products and are pervasive in our life. With the discharge of plastic pollutants, a huge number of phthalate compounds enter the ocean. The genetic information of strain SW-3-3 suggests that it has the potential to metabolize phthalates. There are 9 key enzymes in the metabolization pathway, and phthalates are finally catalyzed to produce succinyl-CoA which is further degraded through the tricarboxylic acid (TCA) cycle pathway. This genomic analysis will be helpful for further understanding of the applications of strain SW-3-3 in the remediation of phthalate pollution.


Asunto(s)
Restauración y Remediación Ambiental , Rhodospirillaceae , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Genómica , Humanos , Ácidos Ftálicos , Filogenia , Plásticos , ARN Ribosómico 16S/genética , Rhodospirillaceae/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN
5.
Peptides ; 99: 142-152, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28966141

RESUMEN

Gastrin-releasing peptide (GRP) is a mammalian bombesin (BN)-like peptide which plays a role in a number of important physiological functions via its receptor (gastrin-releasing peptide receptor, GRPR) in most animals. However, little is known about the gene encoding GRPR and its functions (especially reproduction) in pigs. In this study, we first cloned and analyzed the pig GRPR cDNA. Then we systematically investigated the expression levels of GRPR mRNA by relative real-time PCR (RT-PCR), and analyzed the distribution of the GRPR protein in pig tissues via immunohistochemistry (IHC). Finally, we studied the effect of GRP on testosterone secretion and GRPR (mRNA and protein) expression in Leydig cells. Results showed that the pig GRPR cDNA cloned at 1487bp, including one open reading frame (ORF) of 1155bp and encodes 384 amino acids. Significantly, compared with other species, the cDNA sequence and amino acid sequence of the pig GRPR were highly homologous and conservative. The RT-PCR results showed that: in the central nervous system (CNS) and the pituitary, GRPR mRNA was found in the cerebellum, hypophysis, spinal cord and hypothalamus; in the peripheral tissues, GRPR mRNA was mainly expressed in the pancreas, esophagus, ovary, testis, spleen, thymus, jejunum lymph node, muscle and fat. Moreover, the IHC results showed that GRPR immunoreactivity was widely distributed in the pig tissues and organs, such as the pancreas, esophagus, testis, ovary, spleen, pituitary gland and adrenal gland. In addition, we found that GRP promotes testosterone secretion, and increases GRPR mRNA and protein expression in cultured Leydig cells in vitro. These molecular and morphological data not only describe the anatomical locations of GRPR in pigs, but also provide the theoretical foundation for further research into its possible physiological functions in pigs. These results suggest that the GRP/GRPR system may play an important role in regulating the reproductive system of the boar.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Regulación de la Expresión Génica/fisiología , Células Intersticiales del Testículo/metabolismo , Receptores de Bombesina/biosíntesis , Testosterona/biosíntesis , Animales , Células Intersticiales del Testículo/citología , Masculino , Porcinos
6.
Sci Rep ; 7(1): 7020, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765538

RESUMEN

The protective effects of Kisspeptin on heat-induced oxidative stress in rats were investigated by using a combination of biochemical parameters and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. At the end point of the heat stress experiment, histological observation, ultrastructural analysis and biochemical parameters were measured. Metabonomic analysis of liver tissue revealed that Kisspeptin mainly attenuated the alteration of purine metabolism and fatty acid metabolism pathways. Futhermore, Kisspeptin also increased the levels of GSH, T-AOC as well as SOD activities, and upregulated MDA levels. These results provide important mechanistic insights into the protective effects of Kisspeptin against heat-induced oxidative stress.


Asunto(s)
Respuesta al Choque Térmico , Kisspeptinas/metabolismo , Hepatopatías/patología , Metabolómica , Animales , Modelos Animales de Enfermedad , Cromatografía de Gases y Espectrometría de Masas , Histocitoquímica , Microscopía Electrónica , Estrés Oxidativo , Ratas
7.
PLoS One ; 12(7): e0179164, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28692647

RESUMEN

Kisspeptin is a peptide encoded by the Kiss 1 gene and is also called metastin. Previous studies have generally focused on several functions of this peptide, including metastasis, puberty, vasoconstriction and reproduction. However, few studies have focused on the cardiac functions of kisspeptin. In the present study, cardiac histomorphology was observed via TEM (transmission electron microscope) and HE and Masson staining to observe instinctive changes. Serum metabolites levels were also measured and analyzed using GC/TOF-MS after injection with kisspeptin-10. A gene chip was employed to screen the potential genes and pathways in the myocardium at the transcriptional leve, while RT-PCR and Western Blot were conducted to verify the relevant mRNA and protein expression, respectively. Histopathological findings demonstrated that there were many irregular wavy contractions through HE staining and increased fibrosis around the heart cells through Masson staining after treatment with kisspeptin-10. Additionally, the main changes in ultrastructure, including changes in mitochondrial and broken mitochondrial cristae, could be observed with TEM after treatment with kisspeptin-10. The PCA scores plot of the serum metabolites was in the apparent partition after injection of kisspeptin-10. Twenty-six obviously changed metabolites were detected and classified as amino acids, carbohydrate metabolites, organic acids and other metabolites. Furthermore, gene chip analysis showed 1112 differentially expressed genes after treatment with kisspeptin-10, including 330 up-regulated genes and 782 down-regulated genes. These genes were enriched in several signaling pathways related to heart diseases. The RT-PCR result for ITGB8, ITGA4, ITGB7, MYL7, HIF1-α and BNP corresponded with the gene chip assay. Moreover, the upregulated genes ITGB8, ITGA4 and BNP also displayed consistent protein levels in Western Blot results. In summary, these findings suggest that kisspeptin-10 could alter the morphology and structure of myocardial cells, serum metabolite levels, and expression of genes and proteins in heart tissues. Our work determined the profound effects of kisspeptin-10 on the heart, which could further lead to the development of therapeutics related to kisspeptin-10, including antagonists and analogs.


Asunto(s)
Kisspeptinas/sangre , Kisspeptinas/farmacología , Miocardio/metabolismo , Animales , Western Blotting , Cardiomiopatías/genética , Análisis Discriminante , Fibrosis , Kisspeptinas/genética , Kisspeptinas/metabolismo , Análisis de los Mínimos Cuadrados , Masculino , Metaboloma/efectos de los fármacos , Miocardio/patología , Miocardio/ultraestructura , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA