Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Proteomics ; 21(1): 54, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154002

RESUMEN

BACKGROUND: Proteomics and metabolomics offer substantial potential for advancing kidney transplant research by providing versatile opportunities for gaining insights into the biomolecular processes occurring in donors, recipients, and grafts. To achieve this, adequate quality and numbers of biological samples are required. Whilst access to donor samples is facilitated by initiatives such as the QUOD biobank, an adequately powered biobank allowing exploration of recipient-related aspects in long-term transplant outcomes is missing. Rich, yet unverified resources of recipient material are the serum repositories present in the immunological laboratories of kidney transplant centers that prospectively collect recipient sera for immunological monitoring. However, it is yet unsure whether these samples are also suitable for -omics applications, since such clinical samples are collected and stored by individual centers using non-uniform protocols and undergo an undocumented number of freeze-thaw cycles. Whilst these handling and storage aspects may affect individual proteins and metabolites, it was reasoned that incidental handling/storage artifacts will have a limited effect on a theoretical network (pathway) analysis. To test the potential of such long-term stored clinical serum samples for pathway profiling, we submitted these samples to discovery proteomics and metabolomics. METHODS: A mass spectrometry-based shotgun discovery approach was used to obtain an overview of proteins and metabolites in clinical serum samples from the immunological laboratories of the Dutch PROCARE consortium. Parallel analyses were performed with material from the strictly protocolized QUOD biobank. RESULTS: Following metabolomics, more than 800 compounds could be identified in both sample groups, of which 163 endogenous metabolites were found in samples from both biorepositories. Proteomics yielded more than 600 proteins in both groups. Despite the higher prevalence of fragments in the clinical, non-uniformly collected samples compared to the biobanked ones (42.5% vs 26.5% of their proteomes, respectively), these fragments could still be connected to their parent proteins. Next, the proteomic and metabolomic profiles were successfully mapped onto theoretical pathways through integrated pathway analysis, which showed significant enrichment of 79 pathways. CONCLUSIONS: This feasibility study demonstrated that long-term stored serum samples from clinical biorepositories can be used for qualitative proteomic and metabolomic pathway analysis, a notion with far-reaching implications for all biomedical, long-term outcome-dependent research questions and studies focusing on rare events.

2.
Ann Surg ; 278(5): 676-682, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503631

RESUMEN

OBJECTIVE: To provide mechanistic insight into key biological alterations in donation after circulatory death kidneys during continuous pefusion we performed mass spectrometry profiling of perfusate samples collected during a phase 3 randomized double-blind paired clinical trial of hypothermic machine perfusion with and without oxygen (COMPARE). BACKGROUND: Despite the clinical benefits of novel perfusion technologies aiming to better preserve donor organs, biological processes that may be altered during perfusion have remained largely unexplored. The collection of serial perfusate samples during the COMPARE clinical trial provided a unique resource to study perfusate proteomic profiles, with the hypothesis that in-depth profiling may reveal biologically meaningful information on how donor kidneys benefit from this intervention. METHODS: Multiplexed liquid chromatography-tandem mass spectrometry was used to obtain a proteome profile of 210 perfusate samples. Partial least squares discriminant analysis and multivariate analysis involving clinical and perfusion parameters were used to identify associations between profiles and clinical outcomes. RESULTS: Identification and quantitation of 1716 proteins indicated that proteins released during perfusion originate from the kidney tissue and blood, with blood-based proteins being the majority. Data show that the overall hypothermic machine perfusion duration is associated with increasing levels of a subgroup of proteins. Notably, high-density lipoprotein and complement cascade proteins are associated with 12-month outcomes, and blood-derived proteins are enriched in the perfusate of kidneys that developed acute rejection. CONCLUSIONS: Perfusate profiling by mass spectrometry was informative and revealed proteomic changes that are biologically meaningful and, in part, explain the clinical observations of the COMPARE trial.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/métodos , Proteoma/metabolismo , Proteómica , Preservación de Órganos/métodos , Riñón/metabolismo , Perfusión/métodos , Donantes de Tejidos
3.
Cells ; 13(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38391955

RESUMEN

One of the main obstacles to therapeutic success in colorectal cancer (CRC) is the development of acquired resistance to treatment with drugs such as 5-fluorouracil (5-FU). Whilst some resistance mechanisms are well known, it is clear from the stasis in therapy success rate that much is still unknown. Here, a proteomics approach is taken towards identification of candidate proteins using 5-FU-resistant sublines of human CRC cell lines generated in house. Using a multiplexed stable isotope labelling with amino acids in cell culture (SILAC) strategy, 5-FU-resistant and equivalently passaged sensitive cell lines were compared to parent cell lines by growing in Heavy medium with 2D liquid chromatography and Orbitrap Fusion™ Tribrid™ Mass Spectrometry analysis. Among 3003 commonly quantified proteins, six (CD44, APP, NAGLU, CORO7, AGR2, PLSCR1) were found up-regulated, and six (VPS45, RBMS2, RIOK1, RAP1GDS1, POLR3D, CD55) down-regulated. A total of 11 of the 12 proteins have a known association with drug resistance mechanisms or role in CRC oncogenesis. Validation through immunodetection techniques confirmed high expression of CD44 and CD63, two known drug resistance mediators with elevated proteomics expression results. The information revealed by the sensitivity of this method warrants it as an important tool for elaborating the complexity of acquired drug resistance in CRC.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Proteómica , Línea Celular Tumoral , Resistencia a Antineoplásicos , Mucoproteínas , Proteínas Oncogénicas
4.
Cells ; 8(8)2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405017

RESUMEN

Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.


Asunto(s)
Biomarcadores de Tumor/análisis , Glioblastoma/diagnóstico , Proteínas de Neoplasias/análisis , Proteómica , Animales , Humanos , Biología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA