RESUMEN
Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Asunto(s)
Ependimoma , Neoplasias de la Médula Espinal , Adulto , Niño , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Mutación , Epigénesis GenéticaRESUMEN
AIM: Pilocytic astrocytomas (PA) in adults are rare and may be challenging to identify based only on histomorphology. Compared to their paediatric counterparts, they are reportedly molecularly more diverse and associated with a worse prognosis. We aimed to describe the characteristics of adult PAs more precisely by comprehensively profiling a series of 79 histologically diagnosed adult cases (≥18 years). METHODS: We performed global DNA methylation profiling and DNA and RNA panel sequencing, and integrated the results with clinical data. We further compared the molecular characteristics of adult and paediatric PAs that had a significant match to one of the established PA methylation classes in the Heidelberg brain tumour classifier. RESULTS: The mean age in our cohort was 33 years, and 43% of the tumours were located supratentorially. Based on methylation profiling, only 39% of the cases received a significant match to a PA methylation class. Sixteen per cent matched a different tumour type and 45% had a Heidelberg classifier score <0.9 with an affiliation to diverse established methylation classes in t-SNE analyses. Although the KIAA1549::BRAF fusion was found in 98% of paediatric PAs, this was true for only 27% of histologically defined and 55% of adult PAs defined by methylation profiling. CONCLUSIONS: A particularly high fraction of adult tumours with histological features of PA do not match current PA methylation classes, indicating ambiguous histology and an urgent need for molecular profiling. Moreover, even in adult PAs with a match to a PA methylation class, the distribution of genetic drivers differs significantly from their paediatric counterparts (p<0.01).
RESUMEN
Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.
Asunto(s)
Neoplasias Encefálicas/patología , Isocitrato Deshidrogenasa/genética , Oligodendroglioma/patología , Sarcoma/patología , Adulto , Anciano , Neoplasias Encefálicas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Oligodendroglioma/genética , Sarcoma/genéticaRESUMEN
AIMS: KIAA1549-BRAF fusions occur in certain brain tumours and provide druggable targets due to a constitutive activation of the MAP-kinase pathway. We introduce workflows for calling the KIAA1549-BRAF fusion from DNA methylation array-derived copy number as well as DNA panel sequencing data. METHODS: Copy number profiles were analysed by automated screening and visual verification of a tandem duplication on chromosome 7q34, indicative of the KIAA1549-BRAF fusion. Pilocytic astrocytomas of the ICGC cohort with known fusion status were used for validation. KIAA1549-BRAF fusions were called from DNA panel sequencing data using the fusion callers Manta, Arriba with modified filtering criteria and deFuse. We screened DNA methylation and panel sequencing data of 7790 specimens from brain tumour and sarcoma entities. RESULTS: We identified the fusion in 337 brain tumours with both DNA methylation and panel sequencing data. Among these, we detected the fusion from copy number data in 84% and from DNA panel sequencing data in more than 90% using Arriba with modified filters. While in 74% the KIAA1549-BRAF fusion was detected from both methylation array-derived copy number and panel sequencing data, in 9% it was detected from copy number data only and in 16% from panel data only. The fusion was almost exclusively found in pilocytic astrocytomas, diffuse leptomeningeal glioneuronal tumours and high-grade astrocytomas with piloid features. CONCLUSIONS: The KIAA1549-BRAF fusion can be reliably detected from either DNA methylation array or DNA panel data. The use of both methods is recommended for the most sensitive detection of this diagnostically and therapeutically important marker.
Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Fusión Oncogénica/análisis , Análisis de Secuencia de ADN/métodos , Biomarcadores de Tumor/genética , Metilación de ADN , Dosificación de Gen , HumanosRESUMEN
Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.
Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Reparación de la Incompatibilidad de ADN/genética , Isocitrato Deshidrogenasa/genética , Adolescente , Adulto , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Niño , Metilación de ADN , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Inestabilidad de Microsatélites , Mutación/genética , Recurrencia Local de Neoplasia , Pronóstico , Transducción de Señal/genética , Análisis de Supervivencia , Proteína Nuclear Ligada al Cromosoma X/genética , Adulto JovenRESUMEN
Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/genética , Glioblastoma/patología , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patología , Fosfohidrolasa PTEN/genética , Proteínas de Unión a Retinoblastoma/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 7/genética , Estudios de Cohortes , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Variaciones en el Número de Copia de ADN , Femenino , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Diffuse IDH-mutant astrocytic tumors are rarely diagnosed in the cerebellum or brainstem. In this multi-institutional study, we characterized a series of primary infratentorial IDH-mutant astrocytic tumors with respect to clinical and molecular parameters. We report that about 80% of IDH mutations in these tumors are of non-IDH1-R132H variants which are rare in supratentorial astrocytomas. Most frequently, IDH1-R132C/G and IDH2-R172S/G mutations were present. Moreover, the frequencies of ATRX-loss and MGMT promoter methylation, which are typically associated with IDH mutations in supratentorial astrocytic tumors, were significantly lower in the infratentorial compartment. Gene panel sequencing revealed two samples with IDH1-R132C/H3F3A-K27M co-mutations. Genome-wide DNA methylation as well as chromosomal copy number profiling provided further evidence for a molecular distinctiveness of infratentorial IDH-mutant astrocytomas. Clinical outcome of patients with infratentorial IDH-mutant astrocytomas is significantly better than that of patients with diffuse midline gliomas, H3K27M-mutant (p < 0.005) and significantly worse than that of patients with supratentorial IDH-mutant astrocytomas (p = 0.028). The presented data highlight the very existence and distinctiveness of infratentorial IDH-mutant astrocytomas that have important implications for diagnostics and prognostication. They imply that molecular testing is critical for detection of these tumors, since many of these tumors cannot be identified by immunohistochemistry applied for the mutated IDH1-R132H protein or loss of ATRX.
Asunto(s)
Astrocitoma/genética , Astrocitoma/patología , Neoplasias Infratentoriales/genética , Neoplasias Infratentoriales/patología , Isocitrato Deshidrogenasa/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Adulto JovenRESUMEN
Paragangliomas/pheochromocytomas are rare neuroendocrine tumors that arise from the adrenal gland or ganglia at various sites throughout the body. They display a remarkable diversity of driver alterations and are associated with germline mutations in up to 40% of the cases. Comprehensive molecular profiling of abdomino-thoracic paragangliomas revealed four molecularly defined and clinically relevant subtypes. Paragangliomas of the cauda equina region are considered to belong to one of the defined molecular subtypes, but a systematic molecular analysis has not yet been performed. In this study, we analyzed genome-wide DNA methylation profiles of 57 cauda equina paragangliomas and show that these tumors are epigenetically distinct from non-spinal paragangliomas and other tumors. In contrast to paragangliomas of other sites, chromosomal imbalances are widely lacking in cauda equina paragangliomas. Furthermore, RNA and DNA exome sequencing revealed that frequent genetic alterations found in non-spinal paragangliomas-including the prognostically relevant SDH mutations-are absent in cauda equina paragangliomas. Histologically, cauda equina paragangliomas show frequently gangliocytic differentiation and strong immunoreactivity to pan-cytokeratin and cytokeratin 18, which is not common in paragangliomas of other sites. None of our cases had a familial paraganglioma syndrome. Tumors rarely recurred (9%) or presented with multiple lesions within the spinal compartment (7%), but did not metastasize outside the CNS. In summary, we show that cauda equina paragangliomas represent a distinct, sporadic tumor entity defined by a unique clinical and morpho-molecular profile.
Asunto(s)
Cauda Equina/patología , Neoplasias del Sistema Nervioso Central/patología , Tumores Neuroendocrinos/patología , Paraganglioma/genética , Paraganglioma/patología , Neoplasias del Sistema Nervioso Central/genética , Diagnóstico Diferencial , Femenino , Mutación de Línea Germinal/genética , Humanos , Masculino , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/genética , PronósticoAsunto(s)
Cromosomas Humanos Par 1 , Neoplasias Meníngeas , Meningioma , Recurrencia Local de Neoplasia , Humanos , Meningioma/genética , Meningioma/patología , Cromosomas Humanos Par 1/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Deleción Cromosómica , AdultoAsunto(s)
Neoplasias del Sistema Nervioso Central , Ependimoma , Neurofibromatosis 2 , Adolescente , Adulto , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Metilación de ADN/genética , Ependimoma/diagnóstico por imagen , Ependimoma/genética , Ependimoma/patología , Femenino , Genes de la Neurofibromatosis 2 , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Neurofibromatosis 2/complicaciones , Neurofibromatosis 2/genética , Neurofibromatosis 2/patologíaRESUMEN
The morphological patterns leading to the diagnosis of glioblastoma may also commonly be observed in several other distinct tumor entities, which can result in a mixed bag of tumors subsumed under this diagnosis. The 2021 WHO Classification of CNS Tumors has separated several of these entities from the diagnosis of glioblastoma, IDH-wildtype. This study determines the DNA methylation classes most likely receiving the diagnosis glioblastoma, IDH wildtype according to the definition by the WHO 2021 Classification and provides comparative copy number analyses. We identified 10782 methylome datasets uploaded to the web page www.molecularneuropathology.org with a calibrated score of ≥0.9 by the Heidelberg Brain Tumor Classifier version v12.8. These methylation classes were characterized by the diagnosis glioblastoma being the most frequent classification encountered in each of the classes according to the WHO 2021 definition. Further, methylation classes selected for this study predominantly contained adult patients. Unsupervised clustering confirmed the presence of nine methylation classes containing tumors most likely receiving the diagnosis glioblastoma, IDH-wildtype according to the WHO 2021 definition. Copy number analysis and a focus on genes with typical numerical alterations in glioblastoma revealed clear differences between the nine methylation classes. Although great progress in diagnostic precision has been achieved over the last decade, our data clearly demonstrate that glioblastoma, IDH-wildtype still is a heterogeneous group in need of further stratification.
RESUMEN
BACKGROUND: The TERT promoter mutation (TPM) is acquired in most IDH-wildtype glioblastomas (GBM) and IDH-mutant oligodendrogliomas (OD) enabling tumor cell immortality. Previous studies on TPM clonality show conflicting results. This study was performed to determine whether TPM is clonal on a tumor-wide scale. METHODS: We investigated TPM clonality in relation to presumed early events in 19 IDH-wildtype GBM and 10 IDH-mutant OD using 3-dimensional comprehensive tumor sampling. We performed Sanger sequencing on 264 tumor samples and deep amplicon sequencing on 187 tumor samples. We obtained tumor purity and copy number estimates from whole exome sequencing. TERT expression was assessed by RNA-seq and RNAscope. RESULTS: We detected TPM in 100% of tumor samples with quantifiable tumor purity (219 samples). Variant allele frequencies (VAF) of TPM correlate positively with chromosome 10 loss in GBM (Râ =â 0.85), IDH1 mutation in OD (Râ =â 0.87), and with tumor purity (Râ =â 0.91 for GBM; Râ =â 0.90 for OD). In comparison, oncogene amplification was tumor-wide for MDM4- and most EGFR-amplified cases but heterogeneous for MYCN and PDGFRA, and strikingly high in low-purity samples. TPM VAF was moderately correlated with TERT expression (Râ =â 0.52 for GBM; Râ =â 0.65 for OD). TERT expression was detected in a subset of cells, solely in TPM-positive samples, including samples equivocal for tumor. CONCLUSIONS: On a tumor-wide scale, TPM is among the earliest events in glioma evolution. Intercellular heterogeneity of TERT expression, however, suggests dynamic regulation during tumor growth. TERT expression may be a tumor cell-specific biomarker.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Telomerasa , Humanos , Neoplasias Encefálicas/patología , Glioma/patología , Glioblastoma/genética , Glioblastoma/patología , Oligodendroglioma/genética , Mutación , Biomarcadores de Tumor/genética , Isocitrato Deshidrogenasa/genética , Telomerasa/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/genéticaRESUMEN
Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines an aggressive subtype of diffuse glioma. Previous studies have shown that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces mutation-specific immune responses that control H3K27M+ tumors in major histocompatibility complex-humanized mice. Here we describe a first-in-human treatment with H3K27M-vac of eight adult patients with progressive H3K27M+ diffuse midline glioma on a compassionate use basis. Five patients received H3K27M-vac combined with anti-PD-1 treatment based on physician's discretion. Repeat vaccinations with H3K27M-vac were safe and induced CD4+ T cell-dominated, mutation-specific immune responses in five of eight patients across multiple human leukocyte antigen types. Median progression-free survival after vaccination was 6.2 months and median overall survival was 12.8 months. One patient with a strong mutation-specific T cell response after H3K27M-vac showed pseudoprogression followed by sustained complete remission for >31 months. Our data demonstrate safety and immunogenicity of H3K27M-vac in patients with progressive H3K27M+ diffuse midline glioma.
Asunto(s)
Neoplasias Encefálicas , Glioma , Vacunas , Humanos , Adulto , Animales , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Histonas/genética , Glioma/genética , Glioma/terapia , Mutación/genéticaRESUMEN
BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.
Asunto(s)
Neoplasias de la Vaina del Nervio , Neurilemoma , Neuroma Acústico , Humanos , Mutación INDEL , Activación Transcripcional , Neurilemoma/genética , Neurilemoma/patología , Neuroma Acústico/patología , Mutación , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismoRESUMEN
Background: Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and current indications for postoperative radiotherapy are controversial. Recent studies have proposed prognostic meningioma classification systems using DNA methylation profiling, copy number variants, DNA sequencing, RNA sequencing, histology, or integrated models based on multiple combined features. Targeted gene expression profiling has generated robust biomarkers integrating multiple molecular features for other cancers, but is understudied for meningiomas. Methods: Targeted gene expression profiling was performed on 173 meningiomas and an optimized gene expression biomarker (34 genes) and risk score (0 to 1) was developed to predict clinical outcomes. Clinical and analytical validation was performed on independent meningiomas from 12 institutions across 3 continents (N = 1856), including 103 meningiomas from a prospective clinical trial. Gene expression biomarker performance was compared to 9 other classification systems. Results: The gene expression biomarker improved discrimination of postoperative meningioma outcomes compared to all other classification systems tested in the independent clinical validation cohort for local recurrence (5-year area under the curve [AUC] 0.81) and overall survival (5-year AUC 0.80). The increase in area under the curve compared to the current standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval [CI] 0.07-0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% CI 0.37-0.78, P = 0.0001) and re-classified up to 52.0% meningiomas compared to conventional clinical criteria, suggesting postoperative management could be refined for 29.8% of patients. Conclusions: A targeted gene expression biomarker improves discrimination of meningioma outcomes compared to recent classification systems and predicts postoperative radiotherapy responses.
RESUMEN
The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.
Asunto(s)
Neoplasias Encefálicas , Glioma , Adolescente , Humanos , Niño , Multiómica , Glioma/diagnóstico , Glioma/genética , Neuropatología , Metilación de ADN/genética , Mutación , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genéticaRESUMEN
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Biomarcadores , Perfilación de la Expresión Génica , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/patología , Meningioma/genética , Meningioma/radioterapia , Meningioma/patología , Recurrencia Local de Neoplasia/patología , Estudios ProspectivosRESUMEN
Mutations in the TERT promoter represent the genetic underpinnings of tumor cell immortality. Beyond the two most common point mutations, which selectively recruit the ETS factor GABP to activate TERT, the significance of other variants is unknown. In seven cancer types, we identify duplications of wildtype sequence within the core promoter region of TERT that have strikingly similar features including an ETS motif, the duplication length and insertion site. The duplications recruit a GABP tetramer by virtue of the native ETS motif and its precisely spaced duplicated counterpart, activate the promoter and are clonal in a TERT expressing multifocal glioblastoma. We conclude that recurrent TERT promoter duplications are functionally and mechanistically equivalent to the hotspot mutations that confer tumor cell immortality. The shared mechanism of these divergent somatic genetic alterations suggests a strong selective pressure for recruitment of the GABP tetramer to activate TERT.
Asunto(s)
Glioblastoma , Regiones Promotoras Genéticas , Telomerasa , Glioblastoma/genética , Humanos , Mutación , Regiones Promotoras Genéticas/genética , Telomerasa/genética , Telomerasa/metabolismoRESUMEN
BACKGROUND: Myxopapillary ependymoma (MPE) is a heterogeneous disease regarding histopathology and outcome. The underlying molecular biology is poorly understood, and markers that reliably predict the patients' clinical course are unknown. METHODS: We assembled a cohort of 185 tumors classified as MPE based on DNA methylation. Methylation patterns, copy number profiles, and MGMT promoter methylation were analyzed for all tumors, 106 tumors were evaluated histomorphologically, and RNA sequencing was performed for 37 cases. Based on methylation profiling, we defined two subtypes MPE-A and MPE-B, and explored associations with epidemiological, clinical, pathological, and molecular characteristics of these tumors. RESULTS: MPE-A occurred at a median age of 27 years and were enriched with tumors demonstrating papillary morphology and MGMT promoter hypermethylation. Half of these tumors could not be totally resected, and 85% relapsed within 10 years. Copy number alterations were more common in MPE-A. RNA sequencing revealed an enrichment for extracellular matrix and immune system-related signatures in MPE-A. MPE-B occurred at a median age of 45 years and included many tumors with a histological diagnosis of WHO grade II and tanycytic morphology. Patients within this subtype had a significantly better outcome with a relapse rate of 33% in 10 years (P = 3.4e-06). CONCLUSIONS: We unraveled the morphological and clinical heterogeneity of MPE by identifying two molecularly distinct subtypes. These subtypes significantly differed in progression-free survival and will likely need different protocols for surveillance and treatment.