Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768297

RESUMEN

Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.


Asunto(s)
Titanio , Rayos Ultravioleta , Vacio , Azul de Metileno , Cuarzo , Propiedades de Superficie
2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834133

RESUMEN

Hydrophilicity/hydrophobicity-or wettability-is a key surface characterization metric for titanium used in dental and orthopedic implants. However, the effects of hydrophilicity/hydrophobicity on biological capability remain uncertain, and the relationships between surface wettability and other surface parameters, such as topography and chemistry, are poorly understood. The objective of this study was to identify determinants of surface wettability of titanium and establish the reliability and validity of the assessment. Wettability was evaluated as the contact angle of ddH2O. The age of titanium specimens significantly affected the contact angle, with acid-etched, microrough titanium surfaces becoming superhydrophilic immediately after surface processing, hydrophobic after 7 days, and hydrorepellent after 90 days. Similar age-related loss of hydrophilicity was also confirmed on sandblasted supra-micron rough surfaces so, regardless of surface topography, titanium surfaces eventually become hydrophobic or hydrorepellent with time. On age-standardized titanium, surface roughness increased the contact angle and hydrophobicity. UV treatment of titanium regenerated the superhydrophilicity regardless of age or surface roughness, with rougher surfaces becoming more superhydrophilic than machined surfaces after UV treatment. Conditioning titanium surfaces by autoclaving increased the hydrophobicity of already-hydrophobic surfaces, whereas conditioning with 70% alcohol and hydrating with water or saline attenuated pre-existing hydrophobicity. Conversely, when titanium surfaces were superhydrophilic like UV-treated ones, autoclaving and alcohol cleaning turned the surfaces hydrorepellent and hydrophobic, respectively. UV treatment recovered hydrophilicity without exception. In conclusion, surface roughness accentuates existing wettability and can either increase or decrease the contact angle. Titanium must be age-standardized when evaluating surface wettability. Surface conditioning techniques significantly but unpredictably affect existing wettability. These implied that titanium wettability is significantly influenced by the hydrocarbon pellicle and other contaminants inevitably accumulated. UV treatment may be an effective strategy to standardize wettability by making all titanium surfaces superhydrophilic, thereby allowing the characterization of individual surface topography and chemistry parameters in future studies.


Asunto(s)
Implantes Dentales , Titanio , Humectabilidad , Titanio/química , Propiedades de Superficie , Reproducibilidad de los Resultados , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo
3.
Mater Today Bio ; 23: 100852, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024842

RESUMEN

This is the first genome-wide transcriptional profiling study using RNA-sequencing to investigate osteoblast responses to different titanium surface topographies, specifically between machined, smooth and acid-etched, microrough surfaces. Rat femoral osteoblasts were cultured on machine-smooth and acid-etched microrough titanium disks. The culture system was validated through a series of assays confirming reduced osteoblast attachment, slower proliferation, and faster differentiation on microrough surfaces. RNA-sequencing analysis of osteoblasts at an early stage of culture revealed that gene expression was highly correlated (r = 0.975) between the two topographies, but 1.38 % genes were upregulated and 0.37 % were downregulated on microrough surfaces. Upregulated transcripts were enriched for immune system, plasma membrane, response to external stimulus, and positive regulation to stimulus processes. Structural mapping confirmed microrough surface-promoted gene sharing and networking in signaling pathways and immune system/responses. Target-specific pathway analysis revealed that Rho family G-protein signaling pathways and actin genes, responsible for the formation of stress fibers, cytoplasmic projections, and focal adhesion, were upregulated on microrough surfaces without upregulation of core genes triggered by cell-to-cell interactions. Furthermore, disulfide-linked or -targeted extracellular matrix (ECM) or membranous glycoproteins such as laminin, fibronectin, CD36, and thrombospondin were highly expressed on microrough surfaces. Finally, proliferating cell nuclear antigen (PCNA) and cyclin D1, whose co-expression reduces cell proliferation, were upregulated on microrough surfaces. Thus, osteoblasts on microrough surfaces were characterized by upregulation of genes related to a wide range of functions associated with the immune system, stress/stimulus responses, proliferation control, skeletal and cytoplasmic signaling, ECM-integrin receptor interactions, and ECM-membranous glycoprotein interactions, furthering our knowledge of the surface-dependent expression of osteoblastic biomarkers on titanium.

4.
Cells ; 12(21)2023 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-37947620

RESUMEN

Soft tissue adhesion and sealing around dental and maxillofacial implants, related prosthetic components, and crowns are a clinical imperative to prevent adverse outcomes of periodontitis and periimplantitis. Zirconia is often used to fabricate implant components and crowns. Here, we hypothesized that UV treatment of zirconia would induce unique behaviors in fibroblasts that favor the establishment of a soft tissue seal. Human oral fibroblasts were cultured on zirconia specimens to confluency before placing a second zirconia specimen (either untreated or treated with one minute of 172 nm vacuum UV (VUV) light) next to the first specimen separated by a gap of 150 µm. After seven days of culture, fibroblasts only transmigrated onto VUV-treated zirconia, forming a 2.36 mm volume zone and 5.30 mm leading edge. Cells migrating on VUV-treated zirconia were enlarged, with robust formation of multidirectional cytoplastic projections, even on day seven. Fibroblasts were also cultured on horizontally placed and 45° and 60° tilted zirconia specimens, with the latter configurations compromising initial attachment and proliferation. However, VUV treatment of zirconia mitigated the negative impact of tilting, with higher tilt angles increasing the difference in cellular behavior between control and VUV-treated specimens. Fibroblast size, perimeter, and diameter on day seven were greater than on day one exclusively on VUV-treated zirconia. VUV treatment reduced surface elemental carbon and induced superhydrophilicity, confirming the removal of the hydrocarbon pellicle. Similar effects of VUV treatment were observed on glazed zirconia specimens with silica surfaces. One-minute VUV photofunctionalization of zirconia and silica therefore promotes human oral fibroblast attachment and proliferation, especially under challenging culture conditions, and induces specimen-to-specimen transmigration and sustainable photofunctionalization for at least seven days.


Asunto(s)
Fibroblastos , Dióxido de Silicio , Humanos , Propiedades de Superficie , Vacio
5.
J Funct Biomater ; 14(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36976043

RESUMEN

Light-cured composite resins are widely used in dental restorations to fill cavities and fabricate temporary crowns. After curing, the residual monomer is a known to be cytotoxic, but increasing the curing time should improve biocompatibility. However, a biologically optimized cure time has not been determined through systematic experimentation. The objective of this study was to examine the behavior and function of human gingival fibroblasts cultured with flowable and bulk-fill composites cured for different periods of time, while considering the physical location of the cells with regard to the materials. Biological effects were separately evaluated for cells in direct contact with, and in close proximity to, the two composite materials. Curing time varied from the recommended 20 s to 40, 60, and 80 s. Pre-cured, milled-acrylic resin was used as a control. No cell survived and attached to or around the flowable composite, regardless of curing time. Some cells survived and attached close to (but not on) the bulk-fill composite, with survival increasing with a longer curing time, albeit to <20% of the numbers growing on milled acrylic even after 80 s of curing. A few cells (<5% of milled acrylic) survived and attached around the flowable composite after removal of the surface layer, but attachment was not cure-time dependent. Removing the surface layer increased cell survival and attachment around the bulk-fill composite after a 20-s cure, but survival was reduced after an 80-s cure. Dental-composite materials are lethal to contacting fibroblasts, regardless of curing time. However, longer curing times mitigated material cytotoxicity exclusively for bulk-fill composites when the cells were not in direct contact. Removing the surface layer slightly improved biocompatibility for cells in proximity to the materials, but not in proportion to cure time. In conclusion, mitigating the cytotoxicity of composite materials by increasing cure time is conditional on the physical location of cells, the type of material, and the finish of the surface layer. This study provides valuable information for clinical decision making and novel insights into the polymerization behavior of composite materials.

6.
J Funct Biomater ; 14(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36662058

RESUMEN

Ultraviolet (UV) photofunctionalization counteracts the biological aging of titanium to increase the bioactivity and osseointegration of titanium implants. However, UV photofunctionalization currently requires long treatment times of between 12 min and 48 h, precluding routine clinical use. Here, we tested the ability of a novel, xenon excimer lamp emitting 172 nm vacuum UV (VUV) to decompose organic molecules coated on titanium as a surrogate of photofunctionalization. Methylene blue as a model organic molecule was coated on grade 4 commercially pure titanium and treated with four UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed 57% of methylene blue compared with 2%, 36%, and 42% for UVC, HUVC, and PUV, respectively. UV dose-dependency testing revealed maximal methylene blue decomposition with VUV within one minute. Equivalent decomposition was observed on grade 5 titanium alloy specimens, and placing titanium specimens in quartz ampoules did not compromise efficacy. Methylene blue was decomposed even on polymethyl methacrylate acrylic specimens at 20-25% lower efficiency than on titanium specimens, indicating a relatively small contribution of titanium dioxide-mediated photocatalytic decomposition to the total decomposition. Load-testing revealed that VUV maintained high efficacy of methylene blue decomposition regardless of the coating density, whereas other UV light sources showed low efficacy with thin coatings and plateauing efficacy with thicker coatings. This study provides foundational data on rapid and efficient VUV-mediated organic decomposition on titanium. In synergy with quartz ampoules used as containers, VUV has the potential to overcome current technical challenges hampering the clinical application of UV photofunctionalization.

7.
J Clin Med ; 10(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34441956

RESUMEN

Oral potentially malignant disorders are associated with the development of oral squamous cell carcinoma (OSCC). Most OSCCs are diagnosed via histopathology as oral epithelial dysplasia (OED), but the histologic diagnostic criteria remain non-uniform. Accordingly, the establishment of a diagnostic marker to assist in diagnosis could contribute towards cancer prevention. Melanoma inhibitory activity (MIA) and MIA2 are involved in tumor growth, invasion, and lymph node metastasis in various malignancies. The purpose of this study was to clarify the usefulness of MIA and MIA2 as diagnostic markers of oral mucosal lesions. The expression of MIA and MIA2 was analyzed immunohistochemically in 100 specimens (10 specimens with normal oral mucosa (NOM) and 30 specimens each with low-grade epithelial dysplasia (LED), high-grade epithelial dysplasia (HED), and OSCC). Immunohistochemical results were evaluated based on the Allred scoring system. Cytoplasmic expression of MIA and MIA2 increased in the order of LED, HED, and OSCC. All NOM specimens were negative for cytoplasmic expression. Significant differences were observed between the groups (NOM vs. HED, p < 0.05, NOM vs. OSCC, p < 0.001). These results demonstrate that MIA and MIA2 are expressed in the oral mucosa within early neoplastic lesions and suggest that MIA and MIA2 are useful novel immunohistochemical markers for discriminating between normal tissue and OED.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA