Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 157(2): 313-328, 2014 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-24656405

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Piperidinas/farmacología , Quinolinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Xenoinjertos , Humanos , Hidroxiquinolinas/farmacología , MAP Quinasa Quinasa 4/metabolismo , Ratones , Trasplante de Neoplasias , Pinocitosis/efectos de los fármacos , Vacuolas/metabolismo , Pez Cebra
3.
Nucleic Acids Res ; 50(22): e129, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36189884

RESUMEN

Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.


Asunto(s)
Terapia Molecular Dirigida , Dasatinib/farmacología , Sondas de Oligonucleótidos , Análisis por Matrices de Proteínas , Proteínas , Gefitinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Terapia Molecular Dirigida/métodos
4.
Chemistry ; 28(40): e202200678, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420233

RESUMEN

Reactivators are vital for the treatment of organophosphorus nerve agent (OPNA) intoxication but new alternatives are needed due to their limited clinical applicability. The toxicity of OPNAs stems from covalent inhibition of the essential enzyme acetylcholinesterase (AChE), which reactivators relieve via a chemical reaction with the inactivated enzyme. Here, we present new strategies and tools for developing reactivators. We discover suitable inhibitor scaffolds by using an activity-independent competition assay to study non-covalent interactions with OPNA-AChEs and transform these inhibitors into broad-spectrum reactivators. Moreover, we identify determinants of reactivation efficiency by analysing reactivation and pre-reactivation kinetics together with structural data. Our results show that new OPNA reactivators can be discovered rationally by exploiting detailed knowledge of the reactivation mechanism of OPNA-inhibited AChE.


Asunto(s)
Reactivadores de la Colinesterasa , Agentes Nerviosos , Acetilcolinesterasa/química , Antídotos , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Compuestos Organofosforados , Oximas/química
5.
Empir Softw Eng ; 27(6): 121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757145

RESUMEN

As a result of the COVID-19 pandemic, many agile practitioners had to transition into a remote work environment. Despite remote work not being a new concept for agile software practitioners, the forced or recommended nature of remote work is new. This study investigates how the involuntary shift to remote work and how social restrictions imposed by the COVID-19 pandemic have affected agile software development (ASD), and how agile practitioners have been affected in terms of ways of working. An explanatory sequential mixed methods study was performed. Data were collected one year into the COVID-19 pandemic through a questionnaire with 96 respondents and in-depth semi-structured interviews with seven practitioners from seven different companies. Data were analyzed through Bayesian analysis and thematic analysis. The results show, in general, that the aspects of ASD that have been the most affected is communication and social interactions, while technical work aspects have not experienced the same changes. Moreover, feeling forced to work remotely has a significant impact on different aspects of ASD, e.g., productivity and communication, and industry practitioners' employment of agile development and ways of working have primarily been affected by the lack of social interaction and the shift to digital communication. The results also suggest that there may be a group maturing debt when teams do go back into office, as digital communication and the lack of psychological safety stand in the way for practitioners' ability to have sensitive discussions and progress as a team in a remote setting.

6.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24695224

RESUMEN

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Asunto(s)
Enzimas Reparadoras del ADN/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nucleótidos/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Animales , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalización , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Terapia Molecular Dirigida , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirofosfatasas/antagonistas & inhibidores , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto , Hidrolasas Nudix
7.
Bioorg Med Chem Lett ; 28(14): 2446-2450, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29929882

RESUMEN

The dipeptide amide H-Phe-Phe-NH2 (1) that previously was identified as a ligand for the substance P 1-7 (SP1-7) binding site exerts intriguing results in animal models of neuropathic pain after central but not after peripheral administration. The dipeptide 1 is derived from stepwise modifications of the anti-nociceptive heptapeptide SP1-7 and the tetrapeptide endomorphin-2 that is also binding to the SP1-7 site. We herein report a strong anti-allodynic effect of a new H-Phe-Phe-NH2 peptidomimetic (4) comprising an imidazole ring as a bioisosteric element, in the spare nerve injury (SNI) mice model after peripheral administration. Peptidomimetic 4 was stable in plasma, displayed a fair membrane permeability and a favorable neurotoxic profile. Moreover, the effective dose (ED50) of 4 was superior as compared to gabapentin and morphine that are used in clinic.


Asunto(s)
Amidas/farmacología , Dipéptidos/farmacología , Hiperalgesia/tratamiento farmacológico , Imidazoles/farmacología , Peptidomiméticos/farmacología , Nervios Espinales/efectos de los fármacos , Nervios Espinales/lesiones , Amidas/sangre , Amidas/química , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dipéptidos/sangre , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Imidazoles/sangre , Imidazoles/química , Inyecciones Intraperitoneales , Ratones , Estructura Molecular , Peptidomiméticos/sangre , Peptidomiméticos/química , Ratas
9.
Biochemistry ; 56(24): 3089-3098, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28558199

RESUMEN

Microsomal glutathione transferase 1 (MGST1) has a unique ability to be activated, ≤30-fold, by modification with sulfhydryl reagents. MGST1 exhibits one-third-of-the-sites reactivity toward glutathione and hence heterogeneous binding to different active sites in the homotrimer. Limited turnover stopped-flow kinetic measurements of the activated enzyme allowed us to more accurately determine the KD for the "third" low-affinity GSH binding site (1.4 ± 0.3 mM). The rate of thiolate formation, k2 (0.77 ± 0.06 s-1), relevant to turnover, could also be determined. By deriving the steady-state rate equation for a random sequential mechanism for MGST1, we can predict KM, kcat, and kcat/KM values from these and previously determined pre-steady-state rate constants (all determined at 5 °C). To assess whether the pre-steady-state behavior can account for the steady-state kinetic behavior, we have determined experimental values for kinetic parameters at 5 °C. For reactive substrates and the activated enzyme, data for the microscopic steps account for the global mechanism of MGST1. For the unactivated enzyme and more reactive electrophilic substrates, pre-steady-state and steady-state data can be reconciled only if a more active subpopulation of MGST1 is assumed. We suggest that unactivated MGST1 can be partially activated in its unmodified form. The existence of an activated subpopulation (approximately 10%) could be demonstrated in limited turnover experiments. We therefore suggest that MSGT1 displays a preexisting dynamic equilibrium between high- and low-activity forms.


Asunto(s)
Glutatión Transferasa/metabolismo , Biocatálisis , Activación Enzimática , Glutatión Transferasa/química , Humanos , Cinética , Modelos Moleculares , Estructura Molecular
10.
J Enzyme Inhib Med Chem ; 32(1): 513-521, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28114819

RESUMEN

Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35 µM.


Asunto(s)
Acetamidas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Acetamidas/síntesis química , Acetamidas/química , Amidohidrolasas/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Ratas , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 22(23): 6595-6615, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25456385

RESUMEN

With three recent market approvals and several inhibitors in advanced stages of development, the hepatitis C virus (HCV) NS3/4A protease represents a successful target for antiviral therapy against hepatitis C. As a consequence of dealing with viral diseases in general, there are concerns related to the emergence of drug resistant strains which calls for development of inhibitors with an alternative binding-mode than the existing highly optimized ones. We have previously reported on the use of phenylglycine as an alternative P2 residue in HCV NS3/4A protease inhibitors. Herein, we present the synthesis, structure-activity relationships and in vitro pharmacokinetic characterization of a diverse series of linear and macrocyclic P2 pyrimidinyloxyphenylglycine based inhibitors. With access to vinyl substituents in P3, P2 and P1' positions an initial probing of macrocyclization between different positions, using ring-closing metathesis (RCM) could be performed, after addressing some synthetic challenges. Biochemical results from the wild type enzyme and drug resistant variants (e.g., R155 K) indicate that P3-P1' macrocyclization, leaving the P2 substituent in a flexible mode, is a promising approach. Additionally, the study demonstrates that phenylglycine based inhibitors benefit from p-phenylpyrimidinyloxy and m-vinyl groups as well as from the combination with an aromatic P1 motif with alkenylic P1' elongations. In fact, linear P2-P1' spanning intermediate compounds based on these fragments were found to display promising inhibitory potencies and drug like properties.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Dipéptidos/farmacología , Compuestos Macrocíclicos/farmacología , Inhibidores de Proteasas/farmacología , Pirimidinas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Células CACO-2 , Proteínas Portadoras/metabolismo , Células Cultivadas , Dipéptidos/síntesis química , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Humanos , Péptidos y Proteínas de Señalización Intracelular , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
12.
EBioMedicine ; 109: 105368, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368455

RESUMEN

BACKGROUND: Loss of heterozygosity (LOH) diminishes genetic diversity within cancer genomes. A tumour arising in an individual heterozygous for a functional and a loss-of-function (LoF) allele of a gene occasionally retain only the LoF allele. This can result in deficiency of specific protein activities in cancer cells, creating unique differences between tumour cells and normal cells of the individual. Such differences may constitute vulnerabilities that can be exploited through allele-specific therapies. METHODS: To discover frequently lost genes with prevalent LoF alleles, we mined the 1000 Genomes dataset for SNVs causing protein truncation through base substitution, indels or splice site disruptions, resulting in 60 LoF variants in 60 genes. From these, the variant rs3892097 in the liver enzyme CYP2D6 was selected because it is located within a genomic region that frequently undergoes LOH in several tumor types including hepatocellular cancers. To evaluate the relationship between CYP2D6 activity and the toxicities of anticancer agents, we screened 525 compounds currently in clinical use or undergoing clinical trials using cell model systems with or without CYP2D6 activity. FINDINGS: We identified 12 compounds, AZD-3463, CYC-116, etoposide, everolimus, GDC-0349, lenvatinib, MK-8776, PHA-680632, talazoparib, tyrphostin 9, VX-702, and WZ-3146, using an engineered HEK293T cell model. Of these, talazoparib and MK-8776 demonstrated consistently heightened cytotoxic effects against cells with compromised CYP2D6 activity in engineered hepatocellular cancer cell models. Moreover, talazoparib displayed CYP2D6 genotype dependent effects on primary hepatocellular carcinoma organoids. INTERPRETATION: Exploiting the loss of drug-metabolizing enzyme gene activity in tumor cells following loss of heterozygosity could present a promising therapeutic strategy for targeted cancer treatment. FUNDING: This work was funded by Barncancerfonden (T.S, PR2022-0099 and PR2020-0171, X.Z, TJ2021-0111), Cancerfonden (T.S, 211719Pj and D.G, 222449Pj), Vetenskapsrådet (T.S, 2020-02371 and D.G, 2020-04707), and the Erling Persson Foundation (T.S, 2020-0037 and T.S, 2023-0113).

13.
Antimicrob Agents Chemother ; 57(2): 1012-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23254423

RESUMEN

New drugs for the treatment of human African trypanosomiasis are urgently needed. A number of 2-aminopyrazines/2-aminopyridines were identified as promising leads following a focused screen of 5,500 compounds for Trypanosoma brucei subsp. brucei viability. Described compounds are trypanotoxic in the submicromolar range and show comparably low cytotoxicity on representative mammalian cell lines. Specifically, 6-([6-fluoro-3,4-dihydro-2H-1-benzopyran-4-yl)]oxy)-N-(piperidin-4-yl)pyrazin-2-amine (CBK201352) is trypanotoxic for T. brucei subsp. brucei, T. brucei subsp. gambiense, and T. brucei subsp. rhodesiense and is nontoxic to mammalian cell lines, and in vitro preclinical assays predict promising pharmacokinetic parameters. Mice inoculated intraperitoneally (i.p.) with 25 mg/kg CBK201352 twice daily for 10 days, starting on the day of infection with T. brucei subsp. brucei, show complete clearance of parasites for more than 90 days. Thus, CBK201352 and related analogs are promising leads for the development of novel treatments for human African trypanosomiasis.


Asunto(s)
Aminopiridinas/farmacología , Benzopiranos/farmacología , Piperidinas/farmacología , Pirazinas/farmacología , Tripanocidas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Aminopiridinas/uso terapéutico , Animales , Benzopiranos/uso terapéutico , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Piperidinas/uso terapéutico , Pirazinas/uso terapéutico , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/parasitología
14.
Diabetes ; 72(5): 638-652, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821829

RESUMEN

NADPH oxidases (NOXs) are major players in generating reactive oxygen species (ROS) and are implicated in various neurodegenerative ocular pathologies. The aim of this study was to investigate the role of a NOX4 inhibitor (GLX7013114) in two in vivo, experimental streptozotocin (STZ) paradigms depicting the early events of diabetic retinopathy (DR). Animals in the diabetic treated group received GLX7013114 topically (20 µL/eye, 10 mg/mL, once daily) for 14 days (paradigm A: preventive) and 7 days (paradigm B: treated) at 48 h and 4 weeks after STZ injection, respectively. Several methodologies were used (immunohistochemistry, Western blot, real-time PCR, ELISA, pattern electroretinography [PERG]) to assess the diabetes-induced early events of DR, namely oxidative stress, neurodegeneration, and neuroinflammation, and the effect of GLX7013114 on the diabetic insults. GLX7013114, administered as eye drops (paradigms A and B), was beneficial in treating the oxidative nitrative stress, activation of caspase-3 and micro- and macroglia, and attenuation of neuronal markers. It also attenuated the diabetes-induced increase in vascular endothelial growth factor, Evans blue dye leakage, and proinflammatory cytokine (TNF-α protein, IL-1ß/IL-6 mRNA) levels. PERG amplitude values suggested that GLX7013114 protected retinal ganglion cell function (paradigm B). This study provides new findings regarding the pharmacological profile of the novel NOX4 inhibitor GLX7013114 as a promising therapeutic candidate for the treatment of the early stage of DR. ARTICLE HIGHLIGHTS: NADPH oxidases (NOXs) are implicated in the early pathological events of diabetic retinopathy (DR). The NOX4 inhibitor GLX7013114, topically administered, reduced oxidative damage and apoptosis in the rat streptozotocin model of DR. GLX7013114 protected retinal neurons and retinal ganglion cell function and reduced the expression of pro-inflammatory cytokines in the diabetic retina. GLX7013114 diminished the diabetes-induced increase in vascular endothelial growth factor levels and Evans blue dye leakage in retinal tissue. GLX7013114 exhibits neuroprotective, anti-inflammatory, and vasculoprotective properties that suggest it may have a role as a putative therapeutic for the early events of DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ratas , Animales , Retinopatía Diabética/metabolismo , Azul de Evans/metabolismo , Azul de Evans/farmacología , Azul de Evans/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Estreptozocina/farmacología , Retina/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología , NADPH Oxidasas/uso terapéutico , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo
15.
J Med Chem ; 66(2): 1380-1425, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36634346

RESUMEN

We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.


Asunto(s)
Acinetobacter baumannii , Inhibidores de Topoisomerasa II , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Pseudomonas aeruginosa/metabolismo , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/metabolismo , Benzotiazoles , Pruebas de Sensibilidad Microbiana , Girasa de ADN/metabolismo
16.
J Med Chem ; 66(6): 3968-3994, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36877255

RESUMEN

A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125-0.25 µg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1-4 µg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.


Asunto(s)
Staphylococcus aureus , Staphylococcus aureus Resistente a Vancomicina , Animales , Ratones , Staphylococcus aureus/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV , Pruebas de Sensibilidad Microbiana
17.
Pharm Res ; 29(2): 411-26, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21861202

RESUMEN

PURPOSE: To establish in vitro and in silico models that predict clinical drug-drug interactions (DDIs) with the OATP1B1 (SLCO1B1) transporter. METHODS: The inhibitory effect of 146 drugs and drug-like compounds on OATP1B1-mediated transport was studied in HEK293 cells. A computational model was developed to predict OATP1B1 inhibition. Concentration-dependent effects were investigated for six compounds; clinical DDIs were predicted by calculating change in exposure (i.e. R-values) in eight different ways. RESULTS: Sixty-five compounds were identified as OATP1B1 inhibitors at 20 µM. The computational model predicted the test set with 80% accuracy for inhibitors and 91% for non-inhibitors. In vitro-in vivo comparisons underscored the importance of using drugs with known clinical effects as references. Thus, reference drugs, cyclosporin A, gemfibrozil, and fenofibrate, provided an inhibition interval to which three antiviral drugs, atazanavir, lopinavir, and amprenavir, could be compared and their clinical DDIs with OATP1B1 classified. CONCLUSIONS: Twenty-two new OATP1B1 inhibitors were identified, a predictive OATP1B1 inhibition in silico model was developed, and successful predictions of clinical DDIs were obtained with OATP1B1.


Asunto(s)
Interacciones Farmacológicas , Transportadores de Anión Orgánico/antagonistas & inhibidores , Atorvastatina , Simulación por Computador , Estradiol/análogos & derivados , Estradiol/farmacología , Expresión Génica , Células HEK293 , Ácidos Heptanoicos/farmacología , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Modelos Biológicos , Transportadores de Anión Orgánico/metabolismo , Pirroles/farmacología
18.
Biomed Pharmacother ; 146: 112501, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34891119

RESUMEN

Dry age-related macular degeneration (AMD) is a currently untreatable vision threatening disease. Impaired proteasomal clearance and autophagy in the retinal pigment epithelium (RPE) and subsequent photoreceptor damage are connected with dry AMD, but detailed pathophysiology is still unclear. In this paper, we discover inhibition of cytosolic protease, prolyl oligopeptidase (PREP), as a potential pathway to treat dry AMD. We showed that PREP inhibitor exposure induced autophagy in the RPE cells, shown by increased LC3-II levels and decreased p62 levels. PREP inhibitor treatment increased total levels of autophagic vacuoles in the RPE cells. Global proteomics was used to examine the phenotype of a commonly used cell model displaying AMD characteristics, oxidative stress and altered protein metabolism, in vitro. These RPE cells displayed induced protein aggregation and clear alterations in macromolecule metabolism, confirming the relevance of the cell model. Differences in intracellular target engagement of PREP inhibitors were observed with cellular thermal shift assay (CETSA). These differences were explained by intracellular drug exposure (the unbound cellular partition coefficient, Kpuu). Importantly, our data is in line with previous observations regarding the discrepancy between PREP's cleaving activity and outcomes in autophagy. This highlights the need to further explore PREP's role in autophagy so that more effective compounds can be designed to battle diseases in which autophagy induction is needed. The present work is the first report investigating the PREP pathway in the RPE and we predict that the PREP inhibitors can be further optimized for treatment of dry AMD.


Asunto(s)
Degeneración Macular/patología , Prolil Oligopeptidasas/antagonistas & inhibidores , Epitelio Pigmentado de la Retina/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Fenotipo , Proteómica
19.
Nat Cancer ; 3(2): 156-172, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35228749

RESUMEN

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.


Asunto(s)
Aminohidrolasas , Leucemia Mieloide Aguda , Aminohidrolasas/genética , Humanos , Hidrolasas , Leucemia Mieloide Aguda/tratamiento farmacológico , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Enzimas Multifuncionales/genética , Timidina
20.
Sci Rep ; 10(1): 22436, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33384440

RESUMEN

Therapies targeting somatic bystander genetic events represent a new avenue for cancer treatment. We recently identified a subset of colorectal cancer (CRC) patients who are heterozygous for a wild-type and a low activity allele (NAT2*6) but lack the wild-type allele in their tumors due to loss of heterozygosity (LOH) at 8p22. These tumors were sensitive to treatment with a cytotoxic substrate of NAT2 (6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine, APA), and pointed to NAT2 loss being a therapeutically exploitable vulnerability of CRC tumors. To better estimate the total number of treatable CRC patients, we here determined whether tumor cells retaining also other NAT2 low activity variants after LOH respond to APA treatment. The prevalent low activity alleles NAT2*5 and NAT2*14, but not NAT2*7, were found to be low metabolizers with high sensitivity to APA. By analysis of two different CRC patient cohorts, we detected heterozygosity for NAT2 alleles targetable by APA, along with allelic imbalances pointing to LOH, in ~ 24% of tumors. Finally, to haplotype the NAT2 locus in tumor and patient-matched normal samples in a clinical setting, we develop and demonstrate a long-read sequencing based assay. In total, > 79.000 CRC patients per year fulfil genetic criteria for high sensitivity to a NAT2 LOH therapy and their eligibility can be assessed by clinical sequencing.


Asunto(s)
Alelos , Antineoplásicos/uso terapéutico , Arilamina N-Acetiltransferasa/antagonistas & inhibidores , Arilamina N-Acetiltransferasa/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Inhibidores Enzimáticos/uso terapéutico , Terapia Molecular Dirigida , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Inhibidores Enzimáticos/farmacología , Frecuencia de los Genes , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA