Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 607(7920): 732-740, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859178

RESUMEN

Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.


Asunto(s)
Bancos de Muestras Biológicas , Bases de Datos Genéticas , Variación Genética , Genoma Humano , Genómica , Secuenciación Completa del Genoma , África/etnología , Asia/etnología , Estudios de Cohortes , Secuencia Conservada , Exones/genética , Genoma Humano/genética , Haplotipos/genética , Humanos , Mutación INDEL , Irlanda/etnología , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple/genética , Reino Unido
2.
Nature ; 462(7275): 868-74, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20016592

RESUMEN

Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five-one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes-have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.


Asunto(s)
Padre , Predisposición Genética a la Enfermedad/genética , Madres , Polimorfismo de Nucleótido Simple/genética , Alelos , Sitios de Unión , Neoplasias de la Mama/genética , Factor de Unión a CCCTC , Carcinoma Basocelular/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 7/genética , Metilación de ADN/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Genoma Humano/genética , Impresión Genómica/genética , Haplotipos , Humanos , Islandia , Masculino , Linaje , Proteínas Represoras/metabolismo
3.
Genome Biol ; 25(1): 69, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468278

RESUMEN

BACKGROUND: Long-read sequencing can enable the detection of base modifications, such as CpG methylation, in single molecules of DNA. The most commonly used methods for long-read sequencing are nanopore developed by Oxford Nanopore Technologies (ONT) and single molecule real-time (SMRT) sequencing developed by Pacific Bioscience (PacBio). In this study, we systematically compare the performance of CpG methylation detection from long-read sequencing. RESULTS: We demonstrate that CpG methylation detection from 7179 nanopore-sequenced DNA samples is highly accurate and consistent with 132 oxidative bisulfite-sequenced (oxBS) samples, isolated from the same blood draws. We introduce quality filters for CpGs that further enhance the accuracy of CpG methylation detection from nanopore-sequenced DNA, while removing at most 30% of CpGs. We evaluate the per-site performance of CpG methylation detection across different genomic features and CpG methylation rates and demonstrate how the latest R10.4 flowcell chemistry and base-calling algorithms improve methylation detection from nanopore sequencing. Additionally, we show how the methylation detection of 50 SMRT-sequenced genomes compares to nanopore sequencing and oxBS. CONCLUSIONS: This study provides the first systematic comparison of CpG methylation detection tools for long-read sequencing methods. We compare two commonly used computational methods for the detection of CpG methylation in a large number of nanopore genomes, including samples sequenced using the latest R10.4 nanopore flowcell chemistry and 50 SMRT sequenced samples. We provide insights into the strengths and limitations of each sequencing method as well as recommendations for standardization and evaluation of tools designed for genome-scale modified base detection using long-read sequencing.


Asunto(s)
Metilación de ADN , Genoma Humano , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN
4.
Nat Genet ; 56(8): 1624-1631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048797

RESUMEN

Gene promoter and enhancer sequences are bound by transcription factors and are depleted of methylated CpG sites (cytosines preceding guanines in DNA). The absence of methylated CpGs in these sequences typically correlates with increased gene expression, indicating a regulatory role for methylation. We used nanopore sequencing to determine haplotype-specific methylation rates of 15.3 million CpG units in 7,179 whole-blood genomes. We identified 189,178 methylation depleted sequences where three or more proximal CpGs were unmethylated on at least one haplotype. A total of 77,789 methylation depleted sequences (~41%) associated with 80,503 cis-acting sequence variants, which we termed allele-specific methylation quantitative trait loci (ASM-QTLs). RNA sequencing of 896 samples from the same blood draws used to perform nanopore sequencing showed that the ASM-QTL, that is, DNA sequence variability, drives most of the correlation found between gene expression and CpG methylation. ASM-QTLs were enriched 40.2-fold (95% confidence interval 32.2, 49.9) among sequence variants associating with hematological traits, demonstrating that ASM-QTLs are important functional units in the noncoding genome.


Asunto(s)
Islas de CpG , Metilación de ADN , Sitios de Carácter Cuantitativo , Humanos , Regiones Promotoras Genéticas , Haplotipos , Alelos , Regulación de la Expresión Génica , Variación Genética , Secuenciación de Nanoporos/métodos , Genoma Humano
5.
Nat Genet ; 53(6): 779-786, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33972781

RESUMEN

Long-read sequencing (LRS) promises to improve the characterization of structural variants (SVs). We generated LRS data from 3,622 Icelanders and identified a median of 22,636 SVs per individual (a median of 13,353 insertions and 9,474 deletions). We discovered a set of 133,886 reliably genotyped SV alleles and imputed them into 166,281 individuals to explore their effects on diseases and other traits. We discovered an association of a rare deletion in PCSK9 with lower low-density lipoprotein (LDL) cholesterol levels, compared to the population average. We also discovered an association of a multiallelic SV in ACAN with height; we found 11 alleles that differed in the number of a 57-bp-motif repeat and observed a linear relationship between the number of repeats carried and height. These results show that SVs can be accurately characterized at the population scale using LRS data in a genome-wide non-targeted approach and demonstrate how SVs impact phenotypes.


Asunto(s)
Enfermedad/genética , Variación Estructural del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Carácter Cuantitativo Heredable , Alelos , LDL-Colesterol/metabolismo , Cromosomas Humanos/genética , Femenino , Frecuencia de los Genes/genética , Humanos , Islandia , Modelos Lineales , Masculino , Proproteína Convertasa 9/genética , Recombinación Genética/genética , Eliminación de Secuencia/genética
6.
Science ; 319(5868): 1398-401, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18239089

RESUMEN

The genome-wide recombination rate varies between individuals, but the mechanism controlling this variation in humans has remained elusive. A genome-wide search identified sequence variants in the 4p16.3 region correlated with recombination rate in both males and females. These variants are located in the RNF212 gene, a putative ortholog of the ZHP-3 gene that is essential for recombinations and chiasma formation in Caenorhabditis elegans. It is noteworthy that the haplotype formed by two single-nucleotide polymorphisms (SNPs) associated with the highest recombination rate in males is associated with a low recombination rate in females. Consequently, if the frequency of the haplotype changes, the average recombination rate will increase for one sex and decrease for the other, but the sex-averaged recombination rate of the population can stay relatively constant.


Asunto(s)
Cromosomas Humanos Par 4/genética , Genoma Humano , Recombinación Genética , Ubiquitina-Proteína Ligasas/genética , Alelos , Padre , Femenino , Haplotipos , Humanos , Ligasas , Desequilibrio de Ligamiento , Masculino , Meiosis , Datos de Secuencia Molecular , Madres , Polimorfismo de Nucleótido Simple , Caracteres Sexuales , Complejo Sinaptonémico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA