Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730852

RESUMEN

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Asunto(s)
Células/metabolismo , Metabolismo Energético , Adaptación Fisiológica/efectos de la radiación , Adenosina Trifosfato/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Células/efectos de la radiación , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusión , Transporte de Electrón/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Ambiente , Enlace de Hidrógeno , Cinética , Luz , Simulación de Dinámica Molecular , Fenotipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiología , Rhodobacter sphaeroides/efectos de la radiación , Electricidad Estática , Estrés Fisiológico/efectos de la radiación , Temperatura
2.
Proc Natl Acad Sci U S A ; 120(12): e2217922120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36913593

RESUMEN

Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.


Asunto(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/química , Citocromos c , Citocromos b , Estireno , Microscopía por Crioelectrón , Quinonas , Lípidos , Complejo III de Transporte de Electrones , Oxidación-Reducción
3.
Nature ; 575(7783): 535-539, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723268

RESUMEN

The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis.


Asunto(s)
Microscopía por Crioelectrón , Complejo de Citocromo b6f/química , Complejo de Citocromo b6f/ultraestructura , Spinacia oleracea/química , Spinacia oleracea/ultraestructura , Sitios de Unión , Clorofila/química , Hemo/química , Lípidos/química , Modelos Moleculares , Oxidación-Reducción , Fotosíntesis , Plastoquinona/química , Relación Estructura-Actividad
4.
Biochem J ; 481(13): 823-838, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38780411

RESUMEN

The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.


Asunto(s)
Proteínas Bacterianas , Complejos de Proteína Captadores de Luz , Multimerización de Proteína , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glucolípidos/metabolismo , Glucolípidos/química , Modelos Moleculares , Cristalografía por Rayos X
5.
Biochem J ; 480(6): 455-460, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988315

RESUMEN

The reaction centre (RC) in purple phototrophic bacteria is encircled by the primary light-harvesting complex 1 (LH1) antenna, forming the RC-LH1 'core' complex. The Qy absorption maximum of LH1 complexes ranges from ∼875-960 nm in bacteriochlorophyll (BChl) a-utilising organisms, to 1018 nm in the BChl b-containing complex from Blastochloris (Blc.) viridis. The red-shifted absorption of the Blc. viridis LH1 was predicted to be due in part to the presence of the γ subunit unique to Blastochloris spp., which binds to the exterior of the complex and is proposed to increase packing and excitonic coupling of the BChl pigments. The study by Namoon et al. provides experimental evidence for the red-shifting role of the γ subunit and an evolutionary rationale for its incorporation into LH1. The authors show that cells producing RC-LH1 lacking the γ subunit absorb maximally at 972 nm, 46 nm to the blue of the wild-type organism. Wavelengths in the 900-1000 nm region of the solar spectrum transmit poorly through water, thus γ shifts absorption of LH1 to a region where photons have lower energy but are more abundant. Complementation of the mutant with a divergent copy of LH1γ resulted in an intermediate red shift, revealing the possibility of tuning LH1 absorption using engineered variants of this subunit. These findings provide new insights into photosynthesis in the lowest energy phototrophs and how the absorption properties of light-harvesting complexes are modified by the recruitment of additional subunits.


Asunto(s)
Hyphomicrobiaceae , Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Hyphomicrobiaceae/metabolismo , Proteobacteria , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Biochem J ; 479(13): 1487-1503, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35726684

RESUMEN

In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ∼10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.


Asunto(s)
Complejo de Citocromo b6f , Synechocystis , Microscopía por Crioelectrón , Complejo de Citocromo b6f/química , Complejo de Citocromo b6f/metabolismo , Complejo de Citocromo b6f/fisiología , Transporte de Electrón/fisiología , Fotosíntesis , Synechocystis/metabolismo , Synechocystis/fisiología , Tilacoides/genética , Tilacoides/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(12): 6502-6508, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32139606

RESUMEN

Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas Bacterianas/química , Carotenoides/química , Transferencia de Energía , Cinética , Complejos de Proteína Captadores de Luz/química , Fotosíntesis , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo
8.
Biochem J ; 478(17): 3253-3263, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34402504

RESUMEN

The reaction centre light-harvesting 1 (RC-LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC-LH1 complex from Rhodospirillum rubrum at 2.5 Šresolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αß-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC-LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC-LH1 complex.


Asunto(s)
Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Complejos de Proteína Captadores de Luz/química , Rhodospirillum rubrum/química , Proteínas Bacterianas/aislamiento & purificación , Bacterioclorofilas/química , Benzoquinonas/química , Sitios de Unión , Cristalización , Complejo III de Transporte de Electrones/química , Enlace de Hidrógeno , Hidroquinonas/química , Ligandos , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Fosfolípidos/química , Conformación Proteica en Hélice alfa
9.
Biochem J ; 478(21): 3923-3937, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34622934

RESUMEN

The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Šresolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 ß polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αß subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.


Asunto(s)
Proteínas Bacterianas , Complejos de Proteína Captadores de Luz , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dimerización , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Estructura Molecular
10.
Biochem J ; 478(20): 3775-3790, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34590677

RESUMEN

Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Šresolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αß heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Péptidos/química , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Sitios de Unión , Carotenoides/química , Carotenoides/metabolismo , Microscopía por Crioelectrón , Expresión Génica , Hidroquinonas/química , Hidroquinonas/metabolismo , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/efectos de la radiación
11.
Biochemistry ; 60(44): 3302-3314, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34699186

RESUMEN

Light-harvesting 2 (LH2) antenna complexes augment the collection of solar energy in many phototrophic bacteria. Despite its frequent role as a model for such complexes, there has been no three-dimensional (3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy (cryo-EM) to determine the 2.1 Å resolution structure of this LH2 antenna, which is a cylindrical assembly of nine αß heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution of this structure reveals all of the interpigment and pigment-protein interactions that promote the assembly and energy-transfer properties of this complex. Near the cytoplasmic face of the complex there is a ring of nine BChls, which absorb maximally at 800 nm and are designated as B800; each B800 is coordinated by the N-terminal carboxymethionine of LH2-α, part of a network of interactions with nearby residues on both LH2-α and LH2-ß and with the carotenoid. Nine carotenoids, which are spheroidene in the strain we analyzed, snake through the complex, traversing the membrane and interacting with a ring of 18 BChls situated toward the periplasmic side of the complex. Hydrogen bonds with C-terminal aromatic residues modify the absorption of these pigments, which are red-shifted to 850 nm. Overlaps between the macrocycles of the B850 BChls ensure rapid transfer of excitation energy around this ring of pigments, which act as the donors of energy to neighboring LH2 and reaction center light-harvesting 1 (RC-LH1) complexes.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/ultraestructura , Proteínas Bacterianas/metabolismo , Bacterioclorofila A/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Microscopía por Crioelectrón/métodos , Transferencia de Energía , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestructura
12.
J Am Chem Soc ; 142(32): 13898-13907, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672948

RESUMEN

Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.


Asunto(s)
Péptidos/química , Proteínas/química , Temperatura , Estructura Molecular , Estabilidad Proteica , Semiconductores , Análisis Espectral , Xantófilas/química
13.
Photosynth Res ; 144(2): 155-169, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31350671

RESUMEN

Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls reconstituted into the B800 site, have been investigated with static and time-resolved optical spectroscopies at room temperature and at 77 K. The study particularly focused on how reconstitution of a non-native (bacterio)chlorophylls affects excitation energy transfer between the naturally bound carotenoid spheroidene and artificially substituted pigments in the B800 site. Results demonstrate there is no apparent trend in the overall energy transfer rate from spheroidene to B850 bacteriochlorophyll a; however, a trend in energy transfer rate from the spheroidene S1 state to Qy of the B800 (bacterio)chlorophylls is noticeable. These outcomes were applied to test the validity of previously proposed energy values of the spheroidene S1 state, supporting a value in the vicinity of 13,400 cm-1 (746 nm).


Asunto(s)
Bacterioclorofilas/química , Carotenoides/química , Rhodobacter sphaeroides/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Espectrometría de Fluorescencia
14.
Biochim Biophys Acta Bioenerg ; 1859(2): 119-128, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29126780

RESUMEN

The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Rhodopseudomonas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Espectrometría de Masas , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo
15.
Biochim Biophys Acta Bioenerg ; 1859(3): 215-225, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29291373

RESUMEN

Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56±6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites.


Asunto(s)
Proteínas Bacterianas/química , Complejo de Citocromo b6f/química , Complejo III de Transporte de Electrones/química , Maleatos/química , Lípidos de la Membrana/química , Poliestirenos/química , Cromatóforos Bacterianos/química , Cromatóforos Bacterianos/metabolismo , Cromatóforos Bacterianos/ultraestructura , Proteínas Bacterianas/metabolismo , Complejo de Citocromo b6f/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Maleatos/metabolismo , Lípidos de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Poliestirenos/metabolismo , Rhodobacter sphaeroides/metabolismo , Solubilidad , Synechocystis/metabolismo , Tilacoides/química , Tilacoides/metabolismo , Tilacoides/ultraestructura
16.
Photosynth Res ; 138(1): 103-114, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29971571

RESUMEN

As one of a number of new technologies for the harnessing of solar energy, there is interest in the development of photoelectrochemical cells based on reaction centres (RCs) from photosynthetic organisms such as the bacterium Rhodobacter (Rba.) sphaeroides. The cell architecture explored in this report is similar to that of a dye-sensitized solar cell but with delivery of electrons to a mesoporous layer of TiO2 by natural pigment-protein complexes rather than an artificial dye. Rba. sphaeroides RCs were bound to the deposited TiO2 via an engineered extramembrane peptide tag. Using TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) as an electrolyte, these biohybrid photoactive electrodes produced an output that was the net product of cathodic and anodic photocurrents. To explain the observed photocurrents, a kinetic model is proposed that includes (1) an anodic current attributed to injection of electrons from the triplet state of the RC primary electron donor (PT) to the TiO2 conduction band, (2) a cathodic current attributed to reduction of the photooxidized RC primary electron donor (P+) by surface states of the TiO2 and (3) transient cathodic and anodic current spikes due to oxidation/reduction of TMPD/TMPD+ at the conductive glass (FTO) substrate. This model explains the origin of the photocurrent spikes that appear in this system after turning illumination on or off, the reason for the appearance of net positive or negative stable photocurrents depending on experimental conditions, and the overall efficiency of the constructed cell. The model may be a used as a guide for improvement of the photocurrent efficiency of the presented system as well as, after appropriate adjustments, other biohybrid photoelectrodes.


Asunto(s)
Proteínas Inmovilizadas/química , Fotoquímica/métodos , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Compuestos de Anilina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Electrodos , Proteínas Inmovilizadas/metabolismo , Modelos Teóricos , Feofitinas/química , Feofitinas/metabolismo , Fotoquímica/instrumentación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Titanio/química
17.
Photosynth Res ; 135(1-3): 33-43, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28528494

RESUMEN

RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.


Asunto(s)
Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Cromatografía Líquida de Alta Presión , Cinética , Procesamiento de Señales Asistido por Computador , Espectrometría de Fluorescencia , Xantófilas/metabolismo
18.
Faraday Discuss ; 207(0): 307-327, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29364305

RESUMEN

Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.


Asunto(s)
Suministros de Energía Eléctrica , Proteínas Luminiscentes/química , Ingeniería de Proteínas , Rhodobacter sphaeroides/química , Energía Solar , Procesos Fotoquímicos
19.
Biochim Biophys Acta Bioenerg ; 1858(11): 927-938, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28826909

RESUMEN

The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and ß of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and ß polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/ß domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.


Asunto(s)
Proteínas Bacterianas/química , Calcio/química , Chromatiaceae/química , Proteínas Mutantes Quiméricas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calcio/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cationes Bivalentes , Chromatiaceae/metabolismo , Expresión Génica , Ingeniería Genética , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Unión Proteica , Rhodobacter sphaeroides/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xantófilas/química , Xantófilas/metabolismo
20.
Biochim Biophys Acta ; 1857(12): 1925-1934, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27687473

RESUMEN

Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors.


Asunto(s)
Electroquímica/métodos , Luz , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Rhodobacter sphaeroides/efectos de la radiación , Ubiquinona/efectos de la radiación , Técnicas Biosensibles , Electroquímica/instrumentación , Electrodos , Transporte de Electrón , Cinética , Modelos Biológicos , Mutación , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Conformación Proteica , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Energía Solar , Relación Estructura-Actividad , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA