Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Anal Chem ; 94(6): 2865-2872, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107262

RESUMEN

Biophysical cellular information at single-cell sensitivity is becoming increasingly important within analytical and separation platforms that associate the cell phenotype with markers of disease, infection, and immunity. Frequency-modulated electrically driven microfluidic measurement and separation systems offer the ability to sensitively identify single cells based on biophysical information, such as their size and shape, as well as their subcellular membrane morphology and cytoplasmic organization. However, there is a lack of reliable and reproducible model particles with well-tuned subcellular electrical phenotypes that can be used as standards to benchmark the electrical physiology of unknown cell types or to benchmark dielectrophoretic separation metrics of novel device strategies. Herein, the application of red blood cells (RBCs) as multimodal standard particles with systematically modulated subcellular electrophysiology and associated fluorescence level is presented. Using glutaraldehyde fixation to vary membrane capacitance and by membrane resealing after electrolyte penetration to vary interior cytoplasmic conductivity and fluorescence in a correlated manner, each modified RBC type can be identified at single-cell sensitivity based on phenomenological impedance metrics and fitted to dielectric models to compute biophysical information. In this manner, single-cell impedance data from unknown RBC types can be mapped versus these model RBC types for facile determination of subcellular biophysical information and their dielectrophoretic separation conditions, without the need for time-consuming algorithms that often require unknown fitting parameters. Such internal standards for biophysical cytometry can advance in-line phenotypic recognition strategies.


Asunto(s)
Benchmarking , Técnicas Analíticas Microfluídicas , Impedancia Eléctrica , Eritrocitos , Microfluídica
2.
Electrophoresis ; 43(12): 1275-1282, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286736

RESUMEN

Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on-chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100-fold lower conductivity media by using tangential flows of low media conductivity at 200-fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow-focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow-focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on-chip sample preparation platform prior to or post-dielectrophoresis, in-line with on-chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Separación Celular/métodos , Conductividad Eléctrica , Electroforesis/métodos , Técnicas Analíticas Microfluídicas/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos
3.
Analyst ; 147(12): 2731-2738, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35583034

RESUMEN

Islet transplantation is a potential therapy for type 1 diabetes, but it is expensive due to limited pancreas donor numbers and the variability in islet quality. The latter is often addressed by co-culture of harvested islets with stem cells to promote in vitro remodeling of their basement membrane and enable expression of angiogenic factors for enhancing vascularization. However, given the heterogeneity in islet size, shape and function, there is a need for metrics to assess the reorganization dynamics of single islets over the co-culture period. Based on shape-evolution of individual multi-cell aggregates formed during co-culture of human islets with adipose derived stem cells and the pressures required for their bypass through microfluidic constrictions, we present size-normalized biomechanical metrics for monitoring the reorganization. Aggregates below a threshold size exhibit faster reorganization, as evident from rise in their biomechanical opacity and tightening of their size distribution, but this size threshold increases over culture time to include a greater proportion of the aggregates. Such biomechanical metrics can quantify the subpopulation of reorganized aggregates by distinguishing them versus those with incomplete reorganization, over various timepoints during the co-culture.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Tejido Adiposo , Técnicas de Cocultivo , Humanos , Insulina , Islotes Pancreáticos/metabolismo , Células Madre/metabolismo
4.
Electrophoresis ; 42(12-13): 1366-1377, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33687759

RESUMEN

Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells' native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1-2 h of exposure and subsequent culture, cells' viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells' dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.


Asunto(s)
Conductividad Eléctrica , Línea Celular , Separación Celular , Supervivencia Celular , Medios de Cultivo , Electroforesis
5.
Mikrochim Acta ; 189(1): 4, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855041

RESUMEN

Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying ß-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.


Asunto(s)
Catecoles/química , Quitosano/química , Técnicas Electroquímicas/métodos , Proteínas de Escherichia coli/análisis , Nanoporos , beta-Galactosidasa/análisis , Dopamina/farmacología , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Galactósidos/química , Galactósidos/metabolismo , Oro/química , Límite de Detección , Técnicas Analíticas Microfluídicas , Oxidación-Reducción , Rutenio/química , Transactivadores/metabolismo , beta-Galactosidasa/metabolismo
6.
Anal Bioanal Chem ; 412(16): 3847-3857, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32128645

RESUMEN

Phenotypic quantification of cells based on their plasma membrane capacitance and cytoplasmic conductivity, as determined by their dielectrophoretic frequency dispersion, is often used as a marker for their biological function. However, due to the prevalence of phenotypic heterogeneity in many biological systems of interest, there is a need for methods capable of determining the dielectrophoretic dispersion of single cells at high throughput and without the need for sample dilution. We present a microfluidic device methodology wherein localized constrictions in the microchannel are used to enhance the field delivered by adjoining planar electrodes, so that the dielectrophoresis level and direction on flow-focused cells can be determined on each traversing cell in a high-throughput manner based on their deflected flow streamlines. Using a sample of human red blood cells diluted to 2.25 × 108 cells/mL, the dielectrophoretic translation of single cells traversing at a flow rate of 1.68 µL/min is measured at a throughput of 1.1 × 105 cells/min, to distinguish positive versus negative dielectrophoresis and determine their crossover frequency in media of differing conductivity for validation of the computed membrane capacitance to that from prior methods. We envision application of this dynamic dielectrophoresis (Dy-DEP) method towards high-throughput measurement of the dielectric dispersion of single cells to stratify phenotypic heterogeneity of a particular sample based on their DEP crossover frequency, without the need for significant sample dilution. Grapical abstract.


Asunto(s)
Separación Celular/métodos , Electroforesis/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Técnicas Analíticas Microfluídicas/instrumentación
7.
Anal Bioanal Chem ; 412(16): 3835-3845, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32189012

RESUMEN

Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract.


Asunto(s)
Citometría de Flujo/métodos , Técnicas Analíticas Microfluídicas/métodos , Redes Neurales de la Computación , Impedancia Eléctrica , Eritrocitos/citología , Humanos
8.
Anal Bioanal Chem ; 412(16): 3881-3889, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32372273

RESUMEN

The trapping and deflection of biological cells by dielectrophoresis (DEP) at field non-uniformities in a microfluidic device is often conducted in a contactless dielectrophoresis (cDEP) mode, wherein the electrode channel is in a different layer than the sample channel, so that field penetration through the interceding barrier causes DEP above critical cut-off frequencies. In this manner, through physical separation of the electrode and sample channels, it is possible to spatially modulate electric fields with no electrode-induced damage to biological cells in the sample channel. However, since this device requires interlayer alignment of the electrode to sample channel and needs to maintain a thin interceding barrier (~ 15 µm) over the entire length over which DEP is needed (~ 1 cm), variations in alignment and microstructure fidelity cause wide variations in cDEP trapping level and frequency response across devices. We present a strategy to eliminate interlayer alignment by fabricating self-aligned electrode and sample channels, simultaneously with the interceding barrier layer (14-µm width and 50-µm depth), using a single-layer imprint and bond process on cyclic olefin copolymer. Specifically, by designing support structures, we preserve fidelity of the high aspect ratio insulating posts in the sample channel and the interceding barrier between the sample and electrode channels over the entire device footprint (~ 1 cm). The device operation is validated based on impedance measurements to quantify field penetration through the interceding barrier and by DEP trapping measurements. The presented fabrication strategy can eventually improve cDEP device manufacturing protocols to enable more reproducible DEP performance. Graphical abstract.


Asunto(s)
Alquenos/química , Electroforesis/instrumentación , Dispositivos Laboratorio en un Chip , Polímeros/química , Diseño de Equipo
9.
Sens Actuators B Chem ; 3122020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32606491

RESUMEN

Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.

10.
Anal Chem ; 91(16): 10424-10431, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31333013

RESUMEN

Diagnostics based on exosomes and other extracellular vesicles (EVs) are emerging as strategies for informing cancer progression and therapies, since the lipid content and macromolecular cargo of EVs can provide key phenotypic and genotypic information on the parent tumor cell and its microenvironment. We show that EVs derived from more invasive pancreatic tumor cells that express high levels of tumor-specific surface proteins and are composed of highly unsaturated lipids that increase membrane fluidity, exhibit significantly higher conductance versus those derived from less invasive tumor cells, based on dielectrophoresis measurements. Furthermore, through specific binding of the EVs to gold nanoparticle-conjugated antibodies, we show that these conductance differences can be modulated in proportion to the type as well as level of expressed tumor-specific antigens, thereby presenting methods for selective microfluidic enrichment and cytometry-based quantification of EVs based on invasiveness of their parent cell.


Asunto(s)
Antígenos de Neoplasias/análisis , Vesículas Extracelulares/química , Proteínas de Neoplasias/análisis , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Comunicación Celular , Línea Celular Tumoral , Conductividad Eléctrica , Electroforesis , Oro/química , Xenoinjertos , Humanos , Masculino , Nanopartículas del Metal/química , Ratones , Ratones Desnudos , Técnicas Analíticas Microfluídicas , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética
11.
Sens Actuators B Chem ; 276: 472-480, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30369719

RESUMEN

Current methods for measurement of antibiotic susceptibility of pathogenic bacteria are highly reliant on microbial culture, which is time consuming (requires > 16 hours), especially at near minimum inhibitory concentration (MIC) levels of the antibiotic. We present the use of single-cell electrophysiology-based microbiological analysis for rapid phenotypic identification of antibiotic susceptibility at near-MIC levels, without the need for microbial culture. Clostridium difficile (C. difficile) is the single most common cause of antibiotic-induced enteric infection and disease recurrence is common after antibiotic treatments to suppress the pathogen. Herein, we show that de-activation of C. difficile after MIC-level vancomycin treatment, as validated by microbiological growth assays, can be ascertained rapidly by measuring alterations to the microbial cytoplasmic conductivity that is gauged by the level of positive dielectrophoresis (pDEP) and the frequency spectra for co-field electro-rotation (ROT). Furthermore, this single-cell electrophysiology technique can rapidly identify and quantify the live C. difficile subpopulation after vancomycin treatment at sub-MIC levels, whereas methods based on measurement of the secreted metabolite toxin or the microbiological growth rate can identify this persistent C. difficile subpopulation only after 24 hours of microbial culture, without any ability to quantify the subpopulation. The application of multiplexed versions of this technique is envisioned for antibiotic susceptibility screening.

12.
Anal Chem ; 89(11): 5757-5764, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28475301

RESUMEN

Mitochondrial dynamics play an important role within several pathological conditions, including cancer and neurological diseases. For the purpose of identifying therapies that target aberrant regulation of the mitochondrial dynamics machinery and characterizing the regulating signaling pathways, there is a need for label-free means to detect the dynamic alterations in mitochondrial morphology. We present the use of dielectrophoresis for label-free quantification of intracellular mitochondrial modifications that alter cytoplasmic conductivity, and these changes are benchmarked against label-based image analysis of the mitochondrial network. This is validated by quantifying the mitochondrial alterations that are carried out by entirely independent means on two different cell lines: human embryonic kidney cells and mouse embryonic fibroblasts. In both cell lines, the inhibition of mitochondrial fission that leads to a mitochondrial structure of higher connectivity is shown to substantially enhance conductivity of the cell interior, as apparent from the significantly higher positive dielectrophoresis levels in the 0.5-15 MHz range. Using single-cell velocity tracking, we show ∼10-fold higher positive dielectrophoresis levels at 0.5 MHz for cells with a highly connected versus those with a highly fragmented mitochondrial structure, suggesting the feasibility for frequency-selective dielectrophoretic isolation of cells to aid the discovery process for development of therapeutics targeting the mitochondrial machinery.


Asunto(s)
Electroforesis/métodos , Dinámicas Mitocondriales/fisiología , Animales , Línea Celular , Separación Celular/métodos , Rastreo Celular , Técnicas y Procedimientos Diagnósticos , Humanos , Ratones , Mitocondrias/patología , Transducción de Señal
13.
Analyst ; 141(19): 5637-45, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27460478

RESUMEN

Pathogen detection has traditionally been accomplished by utilizing methods such as cell culture, immunoassays, and nucleic acid amplification tests; however, these methods are not easily implemented in resource-limited settings because special equipment for detection and thermal cycling is often required. In this study, we present a magnetic bead aggregation assay coupled to an inexpensive microfluidic fabrication technique that allows for cell phone detection and analysis of a notable pathogen in less than one hour. Detection is achieved through the use of a custom-built system that allows for fluid flow control via centrifugal force, as well as manipulation of magnetic beads with an adjustable rotating magnetic field. Cell phone image capture and analysis is housed in a 3D-printed case with LED backlighting and a lid-mounted Android phone. A custom-written application (app.) is employed to interrogate images for the extent of aggregation present following loop-mediated isothermal amplification (LAMP) coupled to product-inhibited bead aggregation (PiBA) for detection of target sequences. Clostridium difficile is a pathogen of increasing interest due to its causative role in intestinal infections following antibiotic treatment, and was therefore chosen as the pathogen of interest in the present study to demonstrate the rapid, cost-effective, and sequence-specific detection capabilities of the microfluidic platform described herein.

14.
Environ Sci Technol ; 49(21): 12958-67, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26398590

RESUMEN

Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.


Asunto(s)
Cerámica/farmacología , Cryptosporidium parvum/aislamiento & purificación , Desinfección/métodos , Filtración/métodos , Nanopartículas del Metal/química , Plata/farmacología , Agua/parasitología , Animales , Peso Corporal , Cryptosporidium parvum/efectos de los fármacos , Femenino , Imagenología Tridimensional , Iones , Ratones Endogámicos C57BL , Oocistos/citología , Porosidad , Nitrato de Plata/farmacología , Purificación del Agua
15.
Anal Chem ; 86(21): 10855-63, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25343746

RESUMEN

Clostridium difficile (C. difficile) infection (CDI) rates have exhibited a steady rise worldwide over the last two decades and the infection poses a global threat due to the emergence of antibiotic resistant strains. Interstrain antagonistic interactions across the host microbiome form an important strategy for controlling the emergence of CDI. The current diagnosis method for CDI, based on immunoassays for toxins produced by pathogenic C. difficile strains, is limited by false negatives due to rapid toxin degradation. Furthermore, simultaneous monitoring of nontoxigenic C. difficile strains is not possible, due to absence of these toxins, thereby limiting its application toward the control of CDI through optimizing antagonistic interstrain interactions. Herein, we demonstrate that morphological differences within the cell wall of particular C. difficile strains with differing S-layer proteins can induce systematic variations in their electrophysiology, due alterations in cell wall capacitance. As a result, dielectrophoretic frequency analysis can enable the independent fingerprinting and label-free separation of intact microbials of each strain type from mixed C. difficile samples. The sensitivity of this contact-less electrophysiological method is benchmarked against the immunoassay and microbial growth rate methods for detecting alterations within both, toxigenic and nontoxigenic C. difficile strains after vancomycin treatment. This microfluidic diagnostic platform can assist in the development of therapies for arresting clostridial infections by enabling the isolation of individual strains, optimization of antibiotic treatments and the monitoring of microbiomes.


Asunto(s)
Clostridioides difficile/aislamiento & purificación , Electroforesis/métodos , Adhesión Bacteriana , Línea Celular , Clostridioides difficile/clasificación , Clostridioides difficile/fisiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Mucosa Intestinal/microbiología , Microscopía Electrónica de Transmisión , Especificidad de la Especie
16.
Anal Chem ; 86(9): 4120-5, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24697740

RESUMEN

Neuropeptides are vital to the transmission and modulation of neurological signals, with Neuropeptide Y (NPY) and Orexin A (OXA) offering diagnostic information on stress, depression, and neurotrauma. NPY is an especially significant biomarker, since it can be noninvasively collected from sweat, but its detection has been limited by poor sensitivity, long assay times, and the inability to scale-down sample volumes. Herein, we apply electrokinetic preconcentration of the neuropeptide onto patterned graphene-modified electrodes in a nanochannel by frequency-selective dielectrophoresis for 10 s or by electrochemical adsorptive accumulation for 300 s, to enable the electrochemical detection of NPY and OXA at picomolar levels from subnanoliter samples, with sufficient signal sensitivity to avoid interferences from high levels of dopamine and ascorbic acid within biological matrices. Given the high sensitivity of the methodology within small volume samples, we envision its utility toward off-line detection from droplets collected by microdialysis for the eventual measurement of neuropeptides at high spatial and temporal resolutions.


Asunto(s)
Electrodos , Grafito/química , Nanoestructuras , Neuropéptidos/análisis , Cinética , Microfluídica/instrumentación
17.
Electrophoresis ; 35(12-13): 1795-802, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24668830

RESUMEN

Electrorotation (ROT) is a powerful tool for characterizing the dielectric properties of cells and bioparticles. However, its application has been somewhat limited by the need to mitigate disruptions to particle rotation by translation under positive DEP and by frictional interactions with the substrate. While these disruptions may be overcome by implementing particle positioning schemes or field cages, these methods restrict the frequency bandwidth to the negative DEP range and permit only single particle measurements within a limited spatial extent of the device geometry away from field nonuniformities. Herein, we present an electrical tweezer methodology based on a sequence of electrical signals, composed of negative DEP using 180-degree phase-shifted fields for trapping and levitation of the particles, followed by 90-degree phase-shifted fields over a wide frequency bandwidth for highly parallelized electrorotation measurements. Through field simulations of the rotating electrical field under this wave-sequence, we illustrate the enhanced spatial extent for electrorotation measurements, with no limitations to frequency bandwidth. We apply this methodology to characterize subtle modifications in morphology and electrophysiology of Cryptosporidium parvum with varying degrees of heat treatment, in terms of shifts in the electrorotation spectra over the 0.05-40 MHz region. Given the single particle sensitivity and the ability for highly parallelized electrorotation measurements, we envision its application toward characterizing heterogeneous subpopulations of microbial and stem cells.


Asunto(s)
Técnicas Electroquímicas/métodos , Pinzas Ópticas , Simulación por Computador , Cryptosporidium parvum/química , Conductividad Eléctrica , Oocistos/química
18.
Analyst ; 139(1): 66-73, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24225592

RESUMEN

Microbial persistence to antibiotics is attributed to subpopulations with phenotypic variations that cause a spread of susceptibility levels, leading to the recurrence of infections and stability of biofilms. Herein, persistent oocyst subpopulations identified by animal infectivity and excystation assays during the disinfection of Cryptosporidium parvum, a water-borne pathogen capable of causing enteric infections at ultra-low doses, are separated and characterized by quantitative dielectrophoretic tracking over a wide frequency range (10 kHz-10 MHz). To enable the simultaneous and facile dielectrophoretic tracking of individual oocysts, insulator constrictions in a microfluidic channel are utilized to spatially modulate the localized field over the extent needed for defining oocyst trajectories and for obtaining high-resolution displacement versus time measurements under both, positive and negative dielectrophoresis. In this manner, by obviating the need for averaging dielectrophoretic data over a large collection region, the force response is more sensitive to differences in electrophysiology from sub-population fractions. Hence, the electrophysiology of sensitive and persistent oocysts after heat and silver nanoparticle treatments can be quantified by correlating the force response at low frequencies (<100 kHz) to the integrity of the oocyst wall and at high frequencies (0.4-1 MHz) to the sporozoites in the oocyst. This label-free method can characterize heterogeneous microbial samples with subpopulations of phenotypically different alterations, for quantifying the intensity of alteration and fraction with a particular alteration type.


Asunto(s)
Cryptosporidium parvum/química , Cryptosporidium parvum/aislamiento & purificación , Electroforesis/métodos , Oocistos/química , Animales , Ratones
19.
Anal Chim Acta ; 1316: 342818, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969402

RESUMEN

Interdigitated electrodes (IDEs) enable electrochemical signal enhancement through repeated reduction and oxidation of the analyte molecule. Porosity on these electrodes is often used to lower the impedance background. However, their high capacitive current and signal interferences with oxygen reduction limit electrochemical detection ability. We present utilization of alkanethiol modification on nanoporous gold (NPG) electrodes to lower their background capacitance and chemically passivate them from interferences due to oxygen reduction, while maintaining their fast electron transfer rates, as validated by lower separation between anodic and cathodic peaks (ΔE) and lower charge transfer resistance (Rct) values in comparison to planar gold electrodes. Redox amplification based on this modification enables sensitive detection of various small molecules, including pyocyanin, p-aminophenol, and selective detection of dopamine in the presence of ascorbic acid. Alkanethiol NPG arrays are applied as a multiplexed sensor testbed within a well plate to screen binding of various peptide receptors to the SARS COV2 S-protein by using a sandwich assay for conversion of PAPP (4-aminophenyl phosphate) to PAP (p-aminophenol), by the action of AP (alkaline phosphatase), which is validated against optical ELISA screens of the peptides. Such arrays are especially of interest in small volume analytical settings with complex samples, wherein optical methods are unsuitable.


Asunto(s)
Aminofenoles , Técnicas Electroquímicas , Oro , Microelectrodos , Nanoporos , Oxidación-Reducción , Oro/química , Técnicas Electroquímicas/instrumentación , Aminofenoles/química , Compuestos de Sulfhidrilo/química , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles , Límite de Detección , SARS-CoV-2/aislamiento & purificación , Humanos
20.
Lab Chip ; 24(3): 561-571, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38174422

RESUMEN

Due to low numbers of circulating tumor cells (CTCs) in liquid biopsies, there is much interest in enrichment of alternative circulating-like mesenchymal cancer cell subpopulations from in vitro tumor cultures for utilization within molecular profiling and drug screening. Viable cancer cells that are released into the media of drug-treated adherent cancer cell cultures exhibit anoikis resistance or anchorage-independent survival away from their extracellular matrix with nutrient sources and waste sinks, which serves as a pre-requisite for metastasis. The enrichment of these cell subpopulations from tumor cultures can potentially serve as an in vitro source of circulating-like cancer cells with greater potential for scale-up in comparison with CTCs. However, these live circulating-like cancer cell subpopulations exhibit size overlaps with necrotic and apoptotic cells in the culture media, which makes it challenging to selectively enrich them, while maintaining them in their suspended state. We present optimization of a flowthrough high frequency (1 MHz) positive dielectrophoresis (pDEP) device with sequential 3D field non-uniformities that enables enrichment of the live chemo-resistant circulating cancer cell subpopulation from an in vitro culture of metastatic patient-derived pancreatic tumor cells. Central to this strategy is the utilization of single-cell impedance cytometry with gates set by supervised machine learning, to optimize the frequency for pDEP, so that live circulating cells are selected based on multiple biophysical metrics, including membrane physiology, cytoplasmic conductivity and cell size, which is not possible using deterministic lateral displacement that is solely based on cell size. Using typical drug-treated samples with low levels of live circulating cells (<3%), we present pDEP enrichment of the target subpopulation to ∼44% levels within 20 minutes, while rejecting >90% of dead cells. This strategy of utilizing single-cell impedance cytometry to guide the optimization of dielectrophoresis has implications for other complex biological samples.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/patología , Páncreas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA