RESUMEN
Global warming is one of the serious threats that adversely affects the development and reproduction of silkworms. The ideal temperature for silkworms to carryout normal life activities is 20-30 °C. Certain bivoltine silkworms that are raised in tropical regions are thermotolerant. But, prolonged exposure to high temperatures may be fatal. In the present study, fifth instar larvae of bivoltine silkworm were exposed to heat shock at 40 ± 2 °C for a short period of one hour per day to examine the changes in the gut microflora. The study used high throughput sequencing to evaluate the impact of intestinal microbes of silkworms in response to high temperature. The findings demonstrated that elevated temperature has a negative impact on the intestinal microbes of silkworm compared to the control which were reared under the optimum temperature (25 ± 3° C). Four hundred and fifty eight (458) species of microbes were reported in the control group whereas only 434 species were reported in the temperature exposed group. The digestive process of silkworms may also be impaired by heat shock due to their effect on digestive enzymes. So, the results indicated that heat shock has an impact on the intestinal microflora of silkworms that control the activity of associated digestive enzymes which affects the digestion and nutritional intake, eventually impacting the growth and development of silkworm larvae and cocoons produced. The morphometric parameters of silkworm larvae and cocoons also showed a considerable drop when exposed to heat shock.