Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomol NMR ; 78(2): 119-124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407676

RESUMEN

The focus of this project is to take advantage of the large NMR chemical shift anisotropy of 19F to determine the orientation of fluorine labeled biomolecules in situ in oriented biological systems such as muscle. The difficulty with a single fluorine atom is that the orientation determined from a chemical shift is not singlevalued in the case of a fully anisotropic chemical shift tensor. The utility of a labeling approach with two fluorine labels in a fixed molecular framework where one of the labels has an axially symmetric chemical shift anisotropy such as a CF3 group and the other has a fully asymmetric chemical shift anisotropy such as 5-fluorotryptophan is evaluated. The result is that the orientation of the label can be determined straightforwardly from a single one-dimensional 19F NMR spectrum. The potential applications are widespread and not limited to biological applications.


Asunto(s)
Flúor , Resonancia Magnética Nuclear Biomolecular , Flúor/química , Resonancia Magnética Nuclear Biomolecular/métodos , Anisotropía , Marcaje Isotópico/métodos
2.
J Biomol NMR ; 74(1): 1-7, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31912345

RESUMEN

When planning a fluorine labeling strategy for 19F solid state NMR (ssNMR) studies of the structure and/or mobility of fluorine labeled compounds in situ in an oriented biological system, it is important to characterize the NMR properties of the label. This manuscript focuses on the characterization of a selection of aromatic fluorine compounds in dimyristoylphosphatidylcholine bilayers using 19F ssNMR from the standpoint of determining the optimum arrangement of fluorine nuclei on a pendant aromatic ring before incorporation into more complex biological systems.


Asunto(s)
Flúor/química , Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular , Compuestos de Bifenilo/química , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química
3.
PLoS Pathog ; 14(1): e1006826, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29338055

RESUMEN

To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker/genética , Mutación , Proteínas PrPSc/química , Proteínas PrPSc/genética , Enfermedades por Prión/genética , Adulto , Alelos , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Proteínas PrPSc/metabolismo , Dominios Proteicos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética
4.
Metabolomics ; 16(6): 72, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533504

RESUMEN

INTRODUCTION: Prion disease is a form of neurodegenerative disease caused by the misfolding and aggregation of cellular prion protein (PrPC). The neurotoxicity of the misfolded form of prion protein, PrPSc still remains understudied. Here we try to investigate this issue using a metabolomics approach. OBJECTIVES: The intention was to identify and quantify the small-in-size and water-soluble metabolites extracted from mice brains infected with the Rocky Mountain Laboratory isolate of mouse-adapted scrapie prions (RML) and track changes in these metabolites during disease evolution. METHODS: A total of 73 mice were inoculated with RML prions or normal brain homogenate control; brains were harvested at 30, 60, 90, 120 and 150 days post-inoculation (dpi). We devised a high-efficiency metabolite extraction method and used nuclear magnetic resonance spectroscopy to identify and quantify 50 metabolites in the brain extracts. Data were analyzed using multivariate approach. RESULTS: Brain metabolome profiles of RML infected animals displayed continuous changes throughout the course of disease. Among the analyzed metabolites, the most noteworthy changes included increases in myo-inositol and glutamine as well as decreases in 4-aminobutyrate, acetate, aspartate and taurine. CONCLUSION: We report a novel metabolite extraction method for lipid-rich tissue. As all the major metabolites are identifiable and quantifiable by magnetic resonance spectroscopy, this study suggests that tracking of neurochemical profiles could be effective in monitoring the progression of neurodegenerative diseases and useful for assessing the efficacy of candidate therapeutics.


Asunto(s)
Metabolómica/métodos , Priones/metabolismo , Scrapie/metabolismo , Animales , Encéfalo/metabolismo , Progresión de la Enfermedad , Femenino , Masculino , Metaboloma/fisiología , Ratones , Ratones Endogámicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Priones/química , Scrapie/patología
5.
J Biomol NMR ; 73(10-11): 519-523, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31267350

RESUMEN

Insights into the structure and dynamics of large biological systems has been greatly improved by two concurrent NMR approaches: the application of transverse relaxation-optimized spectroscopy (TROSY) techniques in multi-dimensional NMR, especially the methyl-TROSY, and the resurgence of 19F NMR using trifluoromethyl (CF3) probes. Herein we investigate the feasibility of combining these approaches into a trifluoromethyl-TROSY experiment. Using a CF3-labelled parvalbumin, we have evaluated the natural abundance 13C-19F correlation spectra and find no indication of a CF3 TROSY at high magnetic fields.


Asunto(s)
Isótopos de Carbono/análisis , Clorofluorocarburos de Metano/química , Flúor/análisis , Campos Magnéticos , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética con Carbono-13 , Estudios de Factibilidad , Humanos , Espectroscopía de Resonancia Magnética/instrumentación , Parvalbúminas/química
6.
Biochemistry ; 57(46): 6461-6469, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30376637

RESUMEN

Compounds that directly modulate the affinity of the thin filament calcium regulatory proteins in cardiac muscle have potential for treating heart disease. A recent "proof of concept" study showed that the desensitizer W7 can correct hyper-calcium-sensitive sarcomeres from RCM R193H inhibitory subunit troponin I (cTnI) transgenic mice. We have determined the high-resolution nuclear magnetic resonance solution structure of W7 bound to the regulatory domain of calcium binding subunit troponin C (cNTnC)-cTnI cChimera designed to represent the key aspects of the cTnC-cTnI interface. The structure shows that W7 does not perturb the overall structure of the cTnC-cTnI interface, with the helical structure and position of the cTnI switch region remaining intact upon W7 binding. The naphthalene ring of W7 sits in the hydrophobic pocket created by the cNTnC-cTnI switch peptide interface, while the positively charged amine tail extends into the solvent. The positively charged tail of W7 is in the proximity of Arg147 of the cTnI switch region, supporting the suggestion that electrostatic repulsion is an aspect underlying the mechanism of desensitization. Ser84 (replacing the unique Cys84 in cTnC reported to make a reversible covalent bond with levosimendan) also contacts W7.


Asunto(s)
Calcio/metabolismo , Inhibidores Enzimáticos/metabolismo , Sulfonamidas/metabolismo , Troponina C/metabolismo , Animales , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica
7.
Biochemistry ; 57(15): 2256-2265, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29558109

RESUMEN

The development of calcium sensitizers for the treatment of systolic heart failure presents difficulties, including judging the optimal efficacy and the specificity to target cardiac muscle. The thin filament is an attractive target because cardiac troponin C (cTnC) is the site of calcium binding and the trigger for subsequent contraction. One widely studied calcium sensitizer is levosimendan. We have recently shown that when a covalent cTnC-levosimendan analogue is exchanged into cardiac muscle cells, they become constitutively active, demonstrating the potency of a covalent complex. We have also demonstrated that levosimendan reacts in vitro to form a reversible covalent thioimidate bond specifically with cysteine 84, unique to cTnC. In this study, we use mass spectrometry to show that the in vitro mechanism of action of levosimendan is consistent with an allosteric, reversible covalent inhibitor; to determine whether the presence of the cTnI switch peptide or changes in either Ca2+ concentration or pH modify the reaction kinetics; and to determine whether the reaction can occur with cTnC in situ in cardiac myofibrils. Using the derived kinetic rate constants, we predict the degree of covalently modified cTnC in vivo under the conditions studied. We observe that covalent bond formation would be highest under the acidotic conditions resulting from ischemia and discuss whether the predicted level could be sufficient to have therapeutic value. Irrespective of the in vivo mechanism of action for levosimendan, our results provide a rationale and basis for the development of reversible covalent drugs to target the failing heart.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Hidrazonas , Isquemia Miocárdica , Miofibrillas , Piridazinas , Troponina C , Animales , Cisteína/metabolismo , Humanos , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/farmacología , Concentración de Iones de Hidrógeno , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miofibrillas/química , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Piridazinas/química , Piridazinas/farmacocinética , Piridazinas/farmacología , Simendán , Porcinos , Troponina C/química , Troponina C/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(40): 14412-7, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246568

RESUMEN

The cardiac isoform of troponin I (cTnI) has a unique 31-residue N-terminal region that binds cardiac troponin C (cTnC) to increase the calcium sensitivity of the sarcomere. The interaction can be abolished by cTnI phosphorylation at Ser22 and Ser23, an important mechanism for regulating cardiac contractility. cTnC contains two EF-hand domains (the N and C domain of cTnC, cNTnC and cCTnC) connected by a flexible linker. Calcium binding to either domain favors an "open" conformation, exposing a large hydrophobic surface that is stabilized by target binding, cTnI[148-158] for cNTnC and cTnI[39-60] for cCTnC. We used multinuclear multidimensional solution NMR spectroscopy to study cTnI[1-73] in complex with cTnC. cTnI[39-60] binds to the hydrophobic face of cCTnC, stabilizing an alpha helix in cTnI[41-67] and a type VIII turn in cTnI[38-41]. In contrast, cTnI[1-37] remains disordered, although cTnI[19-37] is electrostatically tethered to the negatively charged surface of cNTnC (opposite its hydrophobic surface). The interaction does not directly affect the calcium binding affinity of cNTnC. However, it does fix the positioning of cNTnC relative to the rest of the troponin complex, similar to what was previously observed in an X-ray structure [Takeda S, et al. (2003) Nature 424(6944):35-41]. Domain positioning impacts the effective concentration of cTnI[148-158] presented to cNTnC, and this is how cTnI[19-37] indirectly modulates the calcium affinity of cNTnC within the context of the cardiac thin filament. Phosphorylation of cTnI at Ser22/23 disrupts domain positioning, explaining how it impacts many other cardiac regulatory mechanisms, like the Frank-Starling law of the heart.


Asunto(s)
Calcio/química , Estructura Terciaria de Proteína , Troponina C/química , Troponina I/química , Unión Competitiva , Calcio/metabolismo , Humanos , Modelos Moleculares , Mutación , Miocardio/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Serina/química , Serina/metabolismo , Espectrometría de Fluorescencia , Electricidad Estática , Troponina C/genética , Troponina C/metabolismo , Troponina I/metabolismo
9.
J Mol Cell Cardiol ; 92: 174-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26853943

RESUMEN

One approach to improve contraction in the failing heart is the administration of calcium (Ca(2+)) sensitizers. Although it is known that levosimendan and other sensitizers bind to troponin C (cTnC), their in vivo mechanism is not fully understood. Based on levosimendan, we designed a covalent Ca(2+) sensitizer (i9) that targets C84 of cTnC and exchanged this complex into cardiac muscle. The NMR structure of the covalent complex showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing troponin I affinity, i9 enhanced the Ca(2+) sensitivity of cardiac muscle. We conclude that i9 enhances Ca(2+) sensitivity by stabilizing the open conformation of cTnC. These findings provide new insights into the in vivo mechanism of Ca(2+) sensitization and demonstrate that directly targeting cTnC has significant potential in cardiovascular therapy.


Asunto(s)
Fármacos Cardiovasculares/química , Insuficiencia Cardíaca/tratamiento farmacológico , Hidrazonas/química , Piridazinas/química , Troponina C/química , Animales , Calcio/química , Calcio/metabolismo , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/uso terapéutico , Insuficiencia Cardíaca/patología , Humanos , Hidrazonas/metabolismo , Hidrazonas/uso terapéutico , Contracción Miocárdica/efectos de los fármacos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica/efectos de los fármacos , Piridazinas/metabolismo , Piridazinas/uso terapéutico , Ratas , Simendán , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo
10.
J Mol Cell Cardiol ; 101: 134-144, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27825981

RESUMEN

In cardiac and skeletal muscle, the troponin complex turns muscle contraction on and off in a calcium-dependent manner. Many small molecules are known to bind to the troponin complex to modulate its calcium binding affinity, and this may be useful in a broad range of conditions in which striated muscle function is compromised, such as congestive heart failure. As a tool for developing drugs specific for the cardiac isoform of troponin, we have designed a chimeric construct (cChimera) consisting of the regulatory N-terminal domain of cardiac troponin C (cNTnC) fused to the switch region of cardiac troponin I (cTnI), mimicking the key binding event that turns on muscle contraction. We demonstrate by solution NMR spectroscopy that cChimera faithfully reproduces the native interface between cTnI and cNTnC. We determined that small molecules based on diphenylamine can bind to cChimera with a KD as low as 10µM. Solution NMR structures show that minimal structural perturbations in cChimera are needed to accommodate 3-methyldiphenylamine (3-mDPA), which is probably why it binds with higher affinity than previously studied compounds like bepridil, despite its significantly smaller size. The unsubstituted aromatic ring of 3-mDPA binds to an inner hydrophobic pocket adjacent to the central beta sheet of cNTnC. However, the methyl-substituted ring is able to bind in two different orientations, either inserting into the cNTnC-cTnI interface or "flipping out" to form contacts primarily with helix C of cNTnC. Our work suggests that preservation of the native interaction between cNTnC and cTnI is key to the development of a high affinity cardiac troponin-specific drug.


Asunto(s)
Descubrimiento de Drogas , Modelos Moleculares , Troponina/química , Troponina/metabolismo , Animales , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Troponina C/química , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo
11.
Biochemistry ; 55(43): 6032-6045, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27673371

RESUMEN

The binding of Ca2+ to cardiac troponin C (cTnC) triggers contraction in heart muscle. In the diseased heart, the myocardium is often desensitized to Ca2+, which leads to impaired contractility. Therefore, compounds that sensitize cardiac muscle to Ca2+ (Ca2+-sensitizers) have therapeutic promise. The only Ca2+-sensitizer used regularly in clinical settings is levosimendan. While the primary target of levosimendan is thought to be cTnC, the molecular details of this interaction are not well understood. In this study, we used mass spectrometry, computational chemistry, and nuclear magnetic resonance spectroscopy to demonstrate that levosimendan reacts specifically with cysteine 84 of cTnC to form a reversible thioimidate bond. We also showed that levosimendan only reacts with the active, Ca2+-bound conformation of cTnC. Finally, we propose a structural model of levosimendan bound to cTnC, which suggests that the Ca2+-sensitizing function of levosimendan is due to stabilization of the Ca2+-bound conformation of cTnC.


Asunto(s)
Calcio/metabolismo , Cardiotónicos/metabolismo , Hidrazonas/metabolismo , Miocardio/metabolismo , Piridazinas/metabolismo , Troponina C/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Unión Proteica , Simendán
12.
J Biol Chem ; 290(9): 5725-38, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25586181

RESUMEN

Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.


Asunto(s)
Calnexina/metabolismo , Retículo Endoplásmico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Western Blotting , Calnexina/genética , Perros , Células HeLa , Humanos , Ratones , Ratones Noqueados , Microscopía Confocal , Células 3T3 NIH , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Interferencia de ARN , Sumoilación , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/genética
13.
J Mol Cell Cardiol ; 87: 257-69, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26341255

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca(2+)-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca(2+)-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca(2+)-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Miocardio/metabolismo , Troponina C/química , Troponina C/genética , Animales , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Mutación , Contracción Miocárdica/genética , Miocardio/patología , Miosinas/genética , Miosinas/metabolismo , Fosforilación , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Troponina C/metabolismo
14.
Biochemistry ; 54(23): 3583-93, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25996354

RESUMEN

Intracellular acidosis lowers the Ca²âº sensitivity of cardiac muscle, which results in decreased force generation, decreased cardiac output, and, eventually, heart failure. The A162H mutant of cardiac troponin I in the thin filament turns the heart acidosis-resistant. Physiological and structural studies have provided insights into the mechanism of protection by the A162H substitution; however, the effect of other native residues of cardiac troponin I is not fully understood. In this study, we determined the structure of the A162H mutant of the switch region of cardiac troponin I bound to the regulatory domain of troponin C at pH 6.1, and the dynamics as a function of pH, by NMR spectroscopy to evaluate the changes induced by protonation of A162H. The results indicate that A162H induces a transitory curved conformation on troponin I that promotes contraction, but it is countered by residue E164 to ensure proper relaxation. Our model explains the absence of diastolic impairment in the gain-of-function phenotype induced by the A162H substitution as well as the effects of a variety of mutants studied previously. The description of this mechanism underlines the fine quality of regulation on cardiac muscle contraction and anticipates pharmacological agents that induce modest changes in the contraction-relaxation equilibrium to produce marked effects in cardiac performance.


Asunto(s)
Modelos Moleculares , Proteínas Mutantes/química , Troponina C/química , Troponina I/química , Sustitución de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Radioisótopos de Carbono , Ácido Glutámico/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Radioisótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina I/genética , Troponina I/metabolismo
15.
Biochemistry ; 53(22): 3658-70, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24840010

RESUMEN

Isoform 1 of the mammalian Na(+)/H(+) exchanger (NHE1) is a ubiquitously expressed plasma membrane pH regulatory protein. It removes one intracellular H(+) in exchange for one extracellular Na(+). The 500 N-terminal amino acids comprise the catalytic membrane domain and fold into 12 transmembrane (TM) segments. To gain insight into the structure and function of human NHE1, a region spanning transmembrane domains VI and VII was expressed and purified, and the structure was determined using nuclear magnetic resonance (NMR). Segment VI includes two structurally conserved regions corresponding to two short α-helices involving residues 229-236 and 239-247. Segment VII includes one long helical region spanning residues 255-274. The NMR structure of the peptide containing transmembrane domains VI and VII was very similar to the previously published structures of the single-transmembrane segments except that TM VII was not kinked. Tryptophan scanning site-directed mutagenesis of TM VI demonstrated that mutation of residues V240-V245 to tryptophan eliminated NHE1 activity when the full length protein was expressed in cells. In contrast, mutants F246W and E247W were functional. Double mutant V242F/F260V retained activity, while the individual mutations were not active. The results suggest that the region of TM VI from V240 to V245 is closely associated with TM VII and that, in agreement with the NMR structure of VI-VII segments, V242 and F260 are in close association. A study of two transmembrane peptides provides further insight into the structure of the NHE1 protein.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Proteínas de Transporte de Catión/genética , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética
16.
J Biol Chem ; 288(34): 24609-24, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836910

RESUMEN

Sod2 is the plasma membrane Na(+)/H(+) exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) ((126)FPQINFLGSLLIAGCITSTDPVLSALI(152)) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125-154). NMR analysis yielded a model with two helical regions (amino acids 128-142 and 147-154) separated by an unwound region (amino acids 143-146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na(+)/H(+) exchanger and TM VI of isoform 1 of mammalian Na(+)/H(+) exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sustitución de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética , Homología Estructural de Proteína
17.
Arch Biochem Biophys ; 552-553: 40-9, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24333682

RESUMEN

The calcium sensitivity of cardiac and skeletal muscle is reduced during cytosolic acidosis, and this inhibition is more pronounced in cardiac muscle. Replacing cardiac troponin I with skeletal troponin I reduces the pH sensitivity of cardiac muscle. This diminished pH sensitivity depends on a single amino acid difference in troponin I: an alanine in cardiac and a histidine in skeletal. Studies suggested that when this histidine is protonated, it forms an electrostatic interaction with glutamate 19 on the surface of cardiac troponin C. Structures of the skeletal and cardiac troponin complexes show very different conformations for the region of troponin I surrounding this residue. In this study, we determined the structure of skeletal troponin I bound to cardiac troponin C. Skeletal troponin I is found to bind to cardiac troponin C with histidine 130 in close proximity to glutamate 19. This conformation is homologous to the crystal structure of the skeletal troponin complex; but different than in the cardiac complex. We show that an A162H variant of cardiac troponin I adopts a conformation similar to the skeletal structure. The implications of these structural differences in the context of cardiac muscle regulation are discussed.


Asunto(s)
Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo , Alanina/química , Secuencia de Aminoácidos , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocardio/química , Miocardio/metabolismo , Unión Proteica , Conformación Proteica , Electricidad Estática , Troponina C/química
18.
J Infect Dis ; 207(9): 1451-6, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22927447

RESUMEN

Rabies virus (RV) infection is a fatal nervous system disorder. We describe a patient who died of rabies despite a neuroprotective intervention. Neuropathology showed neuronal loss with abundant RV antigen, genome, and Negri bodies, accompanied by intense neuroinflammation, including by CD8(+) T lymphocyte infiltrates. Deep sequencing and real-time reverse-transcription polymerase chain reaction revealed RNA encoding a bat RV strain together with inflammatory gene induction. RV-infected brain demonstrated reduced neuronal metabolites with an anaerobic metabolic profile by nuclear magnetic resonance (NMR) spectroscopy. These multiplatform studies highlight the extent of ongoing viral replication coupled with inflammation in treated rabies, indicative of a neurological immune reconstitution inflammatory syndrome.


Asunto(s)
Encéfalo/patología , Encefalitis Viral/patología , Metaboloma , Metagenoma , Virus de la Rabia/patogenicidad , Rabia/patología , Anciano , Química Encefálica , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
J Mol Cell Cardiol ; 61: 60-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23220151

RESUMEN

The NHE1 isoform of the Na(+)/H(+) exchanger is present in the plasma membrane of the mammalian myocardium where it functions to regulate intracellular pH by exchanging one external Na(+) for an internal proton. The protein is involved in myocardial ischemia/reperfusion damage and in heart hypertrophy. Topology models and experimental evidence suggest that of the 815 amino acids of the protein, approximately 500 are embedded or closely associated with the lipid bilayer while the balance form a cytosolic, regulatory carboxyl-terminal tail. The precise structure of NHE1 is not known although that of an Escherichia coli homolog, NhaA, has been determined. The structures of fragments of the NHE1 membrane domain have been examined by nuclear magnetic resonance. Several transmembrane segments have a general structure of an extended central region flanked by helical segments. The extended regions often contain amino acids that are important in protein function and possibly in cation coordination and transport. The E. coli Na(+)/H(+) exchanger NhaA has a novel fold consisting in part of two helical transmembrane segments with interrupted regions crossing amid the lipid bilayer. The similarity between the crystal structure of NhaA and partial structures of NHE1 suggests that there may be similarities in the mechanism of Na(+)/H(+) exchange. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Asunto(s)
Proteínas de Transporte de Catión/química , Intercambiadores de Sodio-Hidrógeno/química , Animales , Proteínas de Transporte de Catión/fisiología , Evolución Molecular , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/fisiología , Homología Estructural de Proteína
20.
J Proteome Res ; 12(9): 4230-9, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931672

RESUMEN

Neonatal hypoxic ischemic encephalopathy (HIE) is a severe consequence of perinatal asphyxia (PA) that can result in life-long neurological disability. Disease mechanisms, including the role and interaction of individual metabolic pathways, remain unclear. As hypoxia is an acute condition, aerobic energy metabolism is central to global metabolic pathways, and these metabolites are detectable using 1H NMR spectroscopy, we hypothesized that characterizing the NMR-derived umbilical cord serum metabolome would offer insight into the consequences of PA that lead to HIE. Fifty-nine at-risk infants were enrolled, together with 1:1 matched healthy controls, and stratified by disease severity (n=25, HIE; n=34, non-HIE PA). Eighteen of 37 reproducibly detectable metabolites were significantly altered between study groups. Acetone, 3-hydroxybutyrate, succinate, and glycerol were significantly differentially altered in severe HIE. Multivariate data analysis revealed a metabolite profile associated with both asphyxia and HIE. Multiple-linear regression modeling using 4 metabolites (3-hydroxybutyrate, glycerol, O-phosphocholine, and succinate) predicted HIE severity with an adjusted R2 of 0.4. Altered ketones suggest that systemic metabolism may play a critical role in preventing neurological injury, while altered succinate provides a possible explanation for hypoxia-inducible factor 1-α (HIF-1α) stabilization in HI injury.


Asunto(s)
Asfixia Neonatal/sangre , Sangre Fetal/metabolismo , Hipoxia-Isquemia Encefálica/sangre , Metaboloma , Ácido 3-Hidroxibutírico/sangre , Acetona/sangre , Estudios de Casos y Controles , Femenino , Glicerol/sangre , Humanos , Recién Nacido , Espectroscopía de Resonancia Magnética , Masculino , Curva ROC , Ácido Succínico/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA