Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 7: 567837, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330641

RESUMEN

The pathogenesis of atherosclerosis is complex, evolves, and involves many cell types. Macrophages and vascular smooth muscle cells (VSMCs) are critically involved in atherosclerosis development and progression. Several studies have shown that WNT5A protein is abundantly expressed in human atherosclerotic lesions; however, the mechanism and role of WNT signaling pathway activation is not clearly known. Using THP-1 derived macrophages, and human aortic VSMC cells, we evaluated in vitro how oxidized low-density lipoprotein (oxLDL) and WNT5A signaling interact in these two cell lines. We used western blot, scratch assay, metabolic proliferation assay, as well as immunostaining to analyze the effect of Wnt signaling activation. The results demonstrated that oxLDL, as well as WNT5A (control), induced Disheveled-2 (DVL2) activation and Kif26b degradation, indicating activation of non-canonical Wnt signaling. We found that oxLDL and WNT5A induced FZD5-ROR2 co-localization at the cellular membrane in vitro in THP-1 derived macrophages. Box5 (FZD5 receptor antagonist) inhibited oxLDL-induced DVL2/JNK activation secondary to newly secreted WNT protein from THP-1 derived macrophages. We found that WNT3A (canonical Wnt) and WNT5A showed different roles in this VSMC cell line. These findings indicate that WNT5A is upregulated by oxLDL, promotes foam cell formation, and affects VSMC phenotype and migration in these two cell lines. Also, in these cell lines FZD5 signaling seems to be necessary for lipid accumulation and, through this mechanism, WNT5A could modulate foam cell formation. Thus, our results suggest that WNT5A may contribute to the pathogenesis of vascular disease through modulating macrophage and VSMC behavior.

2.
Cardiovasc Pathol ; 34: 1-8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29474941

RESUMEN

BACKGROUND AND AIMS: Wnt5a is a highly studied member of the Wnt family and recently has been implicated in the pathogenesis of atherosclerosis, but its precise role is unknown. Foam cell development is a critical process to atherosclerotic plaque formation. In the present study, we investigated the role of noncanonical Wnt5a signaling in the development of foam cells. METHODS: Human carotid atherosclerotic tissue and THP-1-derived macrophages were used to investigate the contribution of Wnt5a signaling in the formation of foam cells. Immunohistochemistry was used to evaluate protein expression of scavenger receptors and noncanonical Wnt5a receptors [frizzled 5 (Fz5) and receptor tyrosine kinase-like orphan receptor 2 (Ror2)] in human atherosclerotic macrophages/foam cells. Changes in protein expression in response to Wnt5a stimulation/inhibition were determined by Western blot, and lipid accumulation was evaluated by fluorescent lipid droplet staining. RESULTS: Wnt5a (P<.05), Fz5 (P<.01), and Ror2 (P<.01) were significantly expressed in advanced atherosclerotic lesions compared to less advanced lesions (N=10). Wnt5a, Fz5, and Ror2 were expressed in macrophages/foam cells within the plaque. In vitro studies revealed that Wnt5a significantly increased the expression of the lipid uptake receptor CD36 (P<.05) but not the lipid efflux receptor ATP-binding cassette transporter (P>.05). rWnt5a also significantly increased lipid accumulation in THP-1 macrophages (P<.05). Furthermore, inhibition of Wnt5a signaling with Box5 prevented lipid accumulation (P<.01) and prevented CD36 up-regulation (P<.01). CONCLUSIONS: These results suggest a direct role for Wnt5a signaling in the pathogenesis of atherosclerosis, specifically the accumulation of lipid in macrophages and the formation of foam cells.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Antígenos CD36/metabolismo , Células Espumosas/efectos de los fármacos , Oligopéptidos/farmacología , Proteína Wnt-5a/antagonistas & inhibidores , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Espumosas/metabolismo , Células Espumosas/patología , Receptores Frizzled/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Placa Aterosclerótica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1 , Factores de Tiempo , Proteína Wnt-5a/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA