Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mikrobiyol Bul ; 54(1): 50-65, 2020 Jan.
Artículo en Turco | MEDLINE | ID: mdl-32050878

RESUMEN

Legionella bacteria living in free form or in biofilm and free-living amoebae (FLA) can infect humans through swimming pools and can cause various diseases. FLA may also threaten the health of swimmers because they are capable of being hosts for Legionella and some other bacteria. The aim of this study was to investigate the presence of total aerobic heterotrophic bacteria (TAHB), FLA and Legionella bacteria in swimming pool waters and biofilm samples in Istanbul by using culture and FISH methods. Water plate count agar (wPCA), buffered charcoal yeast extract (BCYE) agar supplemented with glycinevancomycin-polymyxin-cycloheximide (GVPC) and Escherichia coli cultivated non-nutrient agar (NNA) were used for the culture of TAHB, Legionella and FLA. For the FISH method analysis , Leg 705 and Leg PNE1 probes labeled with fluorescent dye for Legionella and ACANTHA probe for Acanthamoeba genus FLA were used. Legionella pneumophila serogroup 1 ATCC 33152, L.pneumophila serogroup 3 ATCC 33155 and Acanthamoeba castellani ATCC 50373 were used as positive controls. TAHB were grown in 92% and 84% of water and biofilm samples. Although Legionella bacteria could not be grown in any of the water samples, it was detected in 6 (24%) water samples by FISH method. Although these bacteria could be grown in 1 (4%) of biofilm samples, 7 (28%) were detected by FISH method. FLA were found to be 16% by culture in water samples and 28% by FISH analysis. These amoebae were detected 8% and 20% in biofilm samples by culture and FISH method, respectively. It was determined that one of the isolates of FLA had thermotolerant activity (potentially pathogenic). L.pneumophila serogroup 1 was detected in one water sample and in four biofilm samples. According to the culture method, TAHB and FLA were found to be more common in water samples than in biofilm samples and Legionella bacteria were more common in biofilm samples than in water samples (p≤ 0.05). In the detection of Legionella bacteria, the superiority of FISH method compared to culture method was found to be statistically significant (p≤ 0.05). In this study, it was found that the number of TAHB in the controlled swimming pools was within the limits determined by the Ministry of Health (≤ 200 cfu/ml). It will be appropriate to examine both water and biofilm samples for the investigation of TAHB, FLA and Legionella. It may be appropriate to use both culture and FISH methods to detect the presence of FLA in water and biofilm samples. This study is the first study to investigate the presence of Legionella and FLA in swimming pools in Istanbul, and further studies are needed to examine more pool water and biofilm samples. With the data obtained, the health principles and controls of swimming pools will be re-considered and will be contributed to public health.


Asunto(s)
Amoeba , Biopelículas , Monitoreo del Ambiente , Legionella , Piscinas , Microbiología del Agua , Agua , Amoeba/fisiología , Monitoreo del Ambiente/métodos , Incidencia , Legionella/fisiología , Turquía , Agua/parasitología
2.
Appl Spectrosc ; 70(8): 1269-77, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27296306

RESUMEN

The purpose of this study is to assess the feasibility of using breath ammonia analysis based on off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) with an external-cavity diode laser (ECL) for noninvasive, real-time diagnosis of Helicobacter pylori (HP) infection. Analyses are performed for the breath of 15 healthy volunteers, and eight children and 19 adults with HP infection. The range of ammonia levels for healthy participants is determined to be between 178 and 610 ppb, whereas the ranges for child and adult patients with HP infection are measured to be 457-2470 ppb and 450-2990 ppb, respectively. The ammonia concentrations for patients with HP infection are significantly higher than the concentrations for healthy volunteers. However, no sharp boundary between the ammonia concentrations in the breath of patients with HP infection and healthy volunteers is observed. No correlation between breath ammonia and either body mass index (BMI) or age is found. The reported results suggest that our breath ammonia measurement system has the potential for future use in easy, noninvasive diagnosis of HP infection.


Asunto(s)
Amoníaco/análisis , Pruebas Respiratorias/métodos , Infecciones por Helicobacter/diagnóstico , Análisis Espectral/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Helicobacter pylori/química , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Adulto Joven
3.
J Biomed Opt ; 21(8): 87004, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27533447

RESUMEN

An external cavity laser (ECL)-based off-axis cavity-enhanced absorption spectroscopy was applied to noninvasive clinical diagnosis using expired breath ammonia analysis: (1) the correlation between breath ammonia levels and blood parameters related to chronic kidney disease (CKD) was investigated and (2) the relationship between breath ammonia levels and blood concentrations of valproic acid (VAP) was studied. The concentrations of breath ammonia in 15 healthy volunteers, 10 epilepsy patients (before and after taking VAP), and 27 patients with different stages of CKD were examined. The range of breath ammonia levels was 120 to 530 ppb for healthy subjects and 710 to 10,400 ppb for patients with CKD. There was a statistically significant positive correlation between breath ammonia concentrations and urea, blood urea nitrogen, creatinine, or estimated glomerular filtration rate in 27 patients. It was demonstrated that taking VAP gave rise to increasing breath ammonia levels. A statistically significant difference was found between the levels of exhaled ammonia (NH3) in healthy subjects and in patients with epilepsy before and after taking VAP. The results suggest that our breath ammonia measurement system has great potential as an easy, noninvasive, real-time, and continuous monitor of the clinical parameters related to epilepsy and CKD.


Asunto(s)
Amoníaco/análisis , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Epilepsia/diagnóstico , Láseres de Semiconductores , Insuficiencia Renal Crónica/diagnóstico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA