Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2122506119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622893

RESUMEN

BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure­activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMOscan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1­specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.


Asunto(s)
Antiinflamatorios no Esteroideos , Antineoplásicos , Anticonceptivos Masculinos , Descubrimiento de Drogas , Proteínas Nucleares , Bibliotecas de Moléculas Pequeñas , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Anticonceptivos Masculinos/química , Anticonceptivos Masculinos/aislamiento & purificación , Anticonceptivos Masculinos/farmacología , ADN/genética , Humanos , Masculino , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
2.
Biochemistry ; 63(9): 1067-1074, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38619104

RESUMEN

NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Proteína Homeótica Nanog , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/química , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Fosforilación , Humanos , Estabilidad Proteica , Unión Proteica , Estereoisomerismo
3.
Nucleic Acids Res ; 48(10): 5639-5655, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32352519

RESUMEN

Cohesin SA1 (STAG1) and SA2 (STAG2) are key components of the cohesin complex. Previous studies have highlighted the unique contributions by SA1 and SA2 to 3D chromatin organization, DNA replication fork progression, and DNA double-strand break (DSB) repair. Recently, we discovered that cohesin SA1 and SA2 are DNA binding proteins. Given the recently discovered link between SA2 and RNA-mediated biological pathways, we investigated whether or not SA1 and SA2 directly bind to RNA using a combination of bulk biochemical assays and single-molecule techniques, including atomic force microscopy (AFM) and the DNA tightrope assay. We discovered that both SA1 and SA2 bind to various RNA containing substrates, including ssRNA, dsRNA, RNA:DNA hybrids, and R-loops. Importantly, both SA1 and SA2 localize to regions on dsDNA that contain RNA. We directly compared the SA1/SA2 binding and R-loops sites extracted from Chromatin Immunoprecipitation sequencing (ChIP-seq) and DNA-RNA Immunoprecipitation sequencing (DRIP-Seq) data sets, respectively. This analysis revealed that SA1 and SA2 binding sites overlap significantly with R-loops. The majority of R-loop-localized SA1 and SA2 are also sites where other subunits of the cohesin complex bind. These results provide a new direction for future investigation of the diverse biological functions of SA1 and SA2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Estructuras R-Loop , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , ADN/metabolismo , ARN/metabolismo , Cohesinas
4.
Science ; 384(6698): 885-890, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781365

RESUMEN

Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.


Asunto(s)
Anticoncepción , Anticonceptivos Masculinos , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Bibliotecas de Moléculas Pequeñas , Animales , Humanos , Masculino , Ratones , Barrera Hematotesticular/metabolismo , Anticonceptivos Masculinos/química , Anticonceptivos Masculinos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Testículo/efectos de los fármacos , Anticoncepción/métodos , Relación Estructura-Actividad
5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1738-47, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23999297

RESUMEN

The specificity of proteases for the residues in and length of substrates is key to understanding their regulatory mechanism, but little is known about length selectivity. Crystal structure analyses of the bacterial aminopeptidase PepS, combined with functional and single-molecule FRET assays, have elucidated a molecular basis for length selectivity. PepS exists in open and closed conformations. Substrates can access the binding hole in the open conformation, but catalytic competency is only achieved in the closed conformation by formation of the S1 binding pocket and proximal movement of Glu343, a general base, to the cleavage site. Hence, peptides longer than the depth of the binding hole block the transition from the open to the closed conformation, and thus length selection is a prerequisite for catalytic activation. A triple-sieve interlock mechanism is proposed featuring the coupling of length selectivity with residue specificity and active-site positioning.


Asunto(s)
Aminopeptidasas/química , Aminopeptidasas/metabolismo , Aminopeptidasas/genética , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Conformación Proteica , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética , Relación Estructura-Actividad , Especificidad por Sustrato/genética
6.
Proc Natl Acad Sci U S A ; 107(47): 20281-6, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059944

RESUMEN

The receptor activator of nuclear factor-κB (RANK) and its ligand RANKL, which belong to the tumor necrosis factor (TNF) receptor-ligand family, mediate osteoclastogenesis. The crystal structure of the RANKL ectodomain (eRANKL) in complex with the RANK ectodomain (eRANK) combined with biochemical assays of RANK mutants indicated that three RANK loops (Loop1, Loop2, and Loop3) bind to the interface of a trimeric eRANKL. Loop3 is particularly notable in that it is structurally distinctive from other TNF-family receptors and forms extensive contacts with RANKL. The disulfide bond (C125-C127) at the tip of Loop3 is important for determining the unique topology of Loop3, and docking E126 close to RANKL, which was supported by the inability of C127A or E126A mutants of RANK to bind to RANKL. Inhibitory activity of RANK mutants, which contain loops of osteoprotegerin (OPG), a soluble decoy receptor to RANKL, confirmed that OPG shares the similar binding mode with RANK and OPG. Loop3 plays a key role in RANKL binding. Peptide inhibitors designed to mimic Loop3 blocked the RANKL-induced differentiation of osteoclast precursors, suggesting that they could be developed as therapeutic agents for the treatment of osteoporosis and bone-related diseases. Furthermore, some of the RANK mutations associated with autosomal recessive osteopetrosis (ARO) resulted in reduced RANKL-binding activity and failure to induce osteoclastogenesis. These results, together with structural interpretation of eRANK-eRANKL interaction, provided molecular understanding for pathogenesis of ARO.


Asunto(s)
Huesos/metabolismo , Modelos Moleculares , Oligopéptidos/farmacología , Osteopetrosis/metabolismo , Osteoprotegerina/metabolismo , Péptidos Cíclicos/farmacología , Ligando RANK/química , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Cristalografía , Ratones , Mutagénesis Sitio-Dirigida , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteopetrosis/genética , Ligando RANK/antagonistas & inhibidores , Receptor Activador del Factor Nuclear kappa-B/genética
7.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289190

RESUMEN

Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in Staphylococcus aureus mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from S. aureus USA300, a strain of community-associated methicillin-resistant S. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target. In vitro cell viability assessment of ΔmtlD knockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor of S. aureus M1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions of SaM1PDH at the atomic level, the crystal structure of SaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to the SaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we propose SaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors of SaM1PDH based on structure-function studies.IMPORTANCE Due to the shortage of effective antibiotics against drug-resistant Staphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase of S. aureus USA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of using SaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with a SaM1PDH inhibitor or knockout of the gene encoding SaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism of SaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses of SaM1PDH. Our results strongly support the concept that targeting of SaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway.


Asunto(s)
Antibacterianos/farmacología , Manitol/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Animales , Femenino , Macrófagos/microbiología , Masculino , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mutación , Células RAW 264.7 , Infecciones Estafilocócicas/microbiología , Deshidrogenasas del Alcohol de Azúcar/genética , Virulencia
8.
Mol Cells ; 39(4): 316-21, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-26923188

RESUMEN

The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.


Asunto(s)
Osteogénesis/efectos de los fármacos , Peptidomiméticos/síntesis química , Peptidomiméticos/farmacología , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/química , Animales , Arginina/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Diseño de Fármacos , Humanos , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Peptidomiméticos/química , Unión Proteica , Relación Estructura-Actividad
9.
Protein Sci ; 19(3): 617-24, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20052680

RESUMEN

Streptococcus pneumoniae Sp1610, a Class-I fold S-adenosylmethionine (AdoMet)-dependent methyltransferase, is a member of the COG2384 family in the Clusters of Orthologous Groups database, which catalyzes the methylation of N(1)-adenosine at position 22 of bacterial tRNA. We determined the crystal structure of Sp1610 in the ligand-free and the AdoMet-bound forms at resolutions of 2.0 and 3.0 A, respectively. The protein is organized into two structural domains: the N-terminal catalytic domain with a Class I AdoMet-dependent methyltransferase fold, and the C-terminal substrate recognition domain with a novel fold of four alpha-helices. Observations of the electrostatic potential surface revealed that the concave surface located near the AdoMet binding pocket was predominantly positively charged, and thus this was predicted to be an RNA binding area. Based on the results of sequence alignment and structural analysis, the putative catalytic residues responsible for substrate recognition are also proposed.


Asunto(s)
S-Adenosilmetionina/química , Streptococcus pneumoniae/enzimología , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Alineación de Secuencia , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA