Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Electron Mater ; 6(1): 550-558, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38283377

RESUMEN

The past decade has seen a rapid development in metal halide perovskite nanocrystals (NCs), which has been witnessed by their potential applications in nanotechnology. The inimitable chemical nature behind their unique photoluminescence characteristics has attracted a growing body of researchers. However, the low intrinsic stability and surface defects of perovskite NCs have hampered their widespread applications. Therefore, numerous techniques such as doping and encapsulation (polymer matrices, silica coating, salt matrix, etc.) have been examined for the surface modification of perovskite NCs and to increase their efficiency and stability. In this study, we demonstrated the self-passivation method for surface defects by introducing potassium (K) or rubidium (Rb) during the colloidal fabrication of NCs, resulting in the much-improved crystallinity, photoluminescence, and improved radiative efficiency. In addition, K-doped NCs showed a long-term colloidal stability of more than 1 month, which indicates the strong bonding between the NCs and the smaller-sized potassium cations (K+). We observed the enhancement of the radiative lifetime that can also be explained by the prevention of "Frenkel defects" when K+ stays at the interstitial site of the nanocrystal structure. Furthermore, our current findings signify the importance of surface modification techniques using alkali metal ions to reduce the surface traps of perovskite nanocrystals (PeNCs). Comparable developments could be applied to polycrystalline perovskite thin films to reduce the interface trap densities. The findings of this study have several important implications for future light-emitting applications.

2.
Membranes (Basel) ; 13(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36984666

RESUMEN

Formamidinium lead bromide (FAPbBr3) nanocrystals have emerged as a powerful platform for optoelectronic applications due to their pure green photoluminescence (PL). However, their low colloidal stability under storage and operation reduces the potential use of FAPbBr3 perovskite nanocrystals (PeNCs) in various applications. In this study, we prepared the poly(L-lactic acid) (PLLA) nanofibrous membrane embedded with FAPbBr3 perovskite nanocrystals by electrospinning the perovskite and PLLA precursor solution. This is a simple and low-cost technique for the direct confinement of nano-sized functional materials in the continuous polymer nanofibres. PLLA as a polymer matrix provided a high surface framework to fully encapsulate the perovskite NCs. In addition, we found that FAPbBr3 PeNCs crystallize spontaneously inside the PLLA nanofibre. The resultant PLLA-FAPbBr3 nanofibrous membranes were stable and remained in the water for about 45 days without any evident decomposition. The results of this research support the idea of new possibilities for the production of air-stable FAPbBr3 PeNCs by forming a composite with PLLA polymer. The authors believe this study is a new milestone in the development of highly stable metal halide perovskite-based nanofibres, which allow for potential use in lasers, waveguides, and flexible energy harvesters.

3.
Int J Biol Macromol ; 167: 1479-1490, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33221270

RESUMEN

In this study, a versatile method for the manufacturing of chitosan-grafted porous poly (L-lactic acid) (P-PLLA) nanofibrous membrane by using polydopamine (PDA) as an intermediate layer has been developed. P-PLLA fibres were electrospun and collected as nano/micro fibrous membranes. Highly porous fibres could serve as a substrate for chitosan to adsorb heavy metal ions. Moreover, PDA was used to modify P-PLLA surface to increase the coating uniformity and stability of chitosan. Due to the very high surface area of P-PLLA membranes and abundant amine groups of both PDA and chitosan, the fabricated membranes were utilized as adsorbent for removal of copper (Cu2+) ions from the wastewater. The adsorption capability of Cu2+ ions was examined with respect to the PDA polymerization times, pH, initial metal ion concentration and time. Finally, the equilibrium adsorption data of chitosan-grafted membranes fitted well with the Langmuir isotherm with the maximum adsorption capacity of 270.27 mg/g.


Asunto(s)
Quitosano/química , Indoles/química , Metales Pesados/química , Nanofibras/química , Poliésteres/química , Polímeros/química , Purificación del Agua/métodos , Adsorción , Cobre/química , Concentración de Iones de Hidrógeno , Iones/química , Cinética , Microscopía Electrónica de Rastreo , Modelos Estadísticos , Nanofibras/ultraestructura , Porosidad , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Difracción de Rayos X
4.
Carbohydr Polym ; 227: 115343, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31590883

RESUMEN

Porous poly(L-lactic acid) (PLLA) nanofibrous membrane with the high surface area was developed by electrospinning and post acetone treatment and used as a substrate for deposition of chitosan. Chitosan was coated onto porous nanofibrous membrane via direct immersion coating method. The porous PLLA/chitosan structure provided chitosan a high surface framework to fully and effectively adsorb heavy metal ions from water and showed higher and faster ion adsorption. The composite membrane was used to eliminate copper ions from aqueous solutions. Chitosan acts as an adsorbent due to the presence of aminic and hydroxide groups which are operating sites for the capture of copper ions. The maximum adsorption capacity of copper ions reached 111.66 ± 3.22 mg/g at pH (7), interaction time (10 min) and temperature (25 °C). The adsorption kinetics of copper ions was established and was well agreed with the second-order model and Langmuir isotherm. Finally, the thermodynamic parameters were studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA