Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 37(11): e23219, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776328

RESUMEN

Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.


Asunto(s)
Aminoacil-ARNt Sintetasas , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Empalme del ARN
2.
Int J Cancer ; 145(5): 1254-1269, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31008529

RESUMEN

Recent advancement in understanding cancer etiology has highlighted epigenetic deregulation as an important phenomenon leading to poor prognosis in glioblastoma (GBM). Polycomb repressive complex 2 (PRC2) is one such important epigenetic modifier reportedly altered in GBM. However, its defined mechanism in tumorigenesis still remains elusive. In present study, we analyzed our in-house ChIPseq data for H3k27me3 modified miRNAs and identified miR-490-3p to be the most common target in GBM with significantly downregulated expression in glioma patients in both TCGA and GBM patient cohort. Our functional analysis delineates for the first time, a central role of PRC2 catalytic unit EZH2 in directly regulating expression of this miRNA and its host gene CHRM2 in GBM. In accordance, cell line treatment with EZH2 siRNA and 5-azacytidine also confirmed its coregulation by CpG and histone methylation based epigenetic mechanisms. Furthermore, induced overexpression of miR-490-3p in GBM cell lines significantly inhibited key hallmarks including cellular proliferation, colony formation and spheroid formation, as well as epithelial-to-mesenchymal transition (EMT), with downregulation of multiple EMT transcription factors and promigratory genes (MMP9, CCL5, PIK3R1, ICAM1, ADAM17 and NOTCH1). We also for the first time report TGFBR1 and TGIF2 as two direct downstream effector targets of miR-490-3p that are also deregulated in GBM. TGIF2, a novel target, was shown to promote migration and EMT that could partially be rescued by miR-490-3p overexpression. Overall, this stands as a first study that provides a direct link between epigenetic modulator EZH2 and oncogenic TGF-ß signaling involving novel miR-490-3p/TGIF2/TGFBR1 axis, that being targetable might be promising in developing new therapeutic intervention strategies for GBM.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas Represoras/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias Encefálicas , Línea Celular Tumoral , Movimiento Celular/fisiología , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Transición Epitelial-Mesenquimal , Glioblastoma/metabolismo , Proteínas de Homeodominio/genética , Humanos , MicroARNs/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/genética , Transducción de Señal
3.
Med Drug Discov ; 232024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281823

RESUMEN

During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.

4.
Cancer Immunol Res ; 11(11): 1493-1507, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728484

RESUMEN

Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I-like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion-related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFß response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFß regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)-ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Melanoma/tratamiento farmacológico , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular , Neoplasias Cutáneas/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo , Melanoma Cutáneo Maligno
5.
Genes (Basel) ; 14(6)2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37372309

RESUMEN

Vigna is a unique genus that consist of multiple crop species that are domesticated in parallel fashion between 7-10 thousand years ago. Here we studied the evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes across five crop species of genus Vigna. In total identified 286, 350, 234, 250, 108 and 161 NLR genes were from Phaseolous vulgaris, Vigna. unguiculata, Vigna mungo, Vigna radiata, Vigna angularis and Vigna umbellata respectively. Comprehensive phylogenetic and clusterization analysis reveals the presence of seven subgroups of Coiled coil like NLRs (CC-NLR) genes and four distinct lineages of Toll interleukin receptor like NLRs (TIR-NLR). Subgroup CCG10-NLR shows large scale diversification among Vigna species suggesting genus specific distinct duplication pattern in Vigna species. Mainly birth of new NLR gene families and higher rate of terminal duplication is the major determinants for expansion of NLRome in genus Vigna. Recent expansion of NLRome in V. anguiculata and V. radiata was also observed which might suggest that domestication have supported their duplication of lineage specific NLR genes. In short, large scale difference in the architecture of NLRome were observed in diploid plant species. Our findings allowed us to hypothesized that independent parallel domestication is the major drivers of highly divergent evolution of NLRome in genus Vigna.


Asunto(s)
Vigna , Vigna/genética , Genoma de Planta , Filogenia , Diploidia
6.
Nat Commun ; 14(1): 1129, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854749

RESUMEN

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Asunto(s)
Fibroblastos , Piel , Cicatrización de Heridas , Animales , Humanos , Ratones , Antagomirs/farmacología , Antagomirs/uso terapéutico , Fibroblastos/metabolismo , Fibroblastos/fisiología , Oligonucleótidos/farmacología , Piel/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
7.
J Clin Invest ; 132(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35819852

RESUMEN

An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5'-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.


Asunto(s)
Metilación de ADN , Transición Epitelial-Mesenquimal , Animales , Islas de CpG , ADN , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones , Ubiquitina-Proteína Ligasas/genética
8.
Chem Biol Interact ; 303: 14-21, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30802432

RESUMEN

Fisetin (3,3',4',7-tetrahydroxyflavone) is a bioactive polyphenolic flavonoid found in many fruits and vegetables. It exhibits a variety of pharmacological activities including anticancer and anti-invasive effects. Epithelial to mesenchymal transition (EMT) allows the tumor cells to acquire increased migratory and invasive properties mediating their dissemination to faraway sites, thus favoring metastasis. With metastatic lung cancer claiming the majority of lung cancer-related deaths, agents targeting the pathways underlying metastasis are translationally promising. In the present study, we have explored the anti-metastatic effects of fisetin in non-small cell lung carcinoma (NSCLC) cells A549 and H1299 with emphasis on EMT. The results suggested a significant inhibition in migration and invasion of NSCLC cells under non-cytotoxic concentrations. Furthermore, an attenuation of the EMT was observed in both the cell lines with upregulation in the expression of epithelial marker E-cadherin in A549 cells and ZO-1 in H1299 cells with concomitant downregulation of the mesenchymal markers vimentin as well as N-cadherin along with invasion marker MMP-2. Herein, the downregulation of the expression of NSCLC stem cell signature markers CD44 and CD133 was also observed. Fisetin decreased the expression of multiple signaling proteins (ß-catenin, NF-κB, EGFR, STAT-3) acting upstream to EMT and known to be involved in induction and maintenance of mesenchymal phenotype, which may explain the observed effects. Moreover, fisetin decreased the ability of H1299 cells to form colonies on soft agar and potentiated the cytotoxic effects of tyrosine kinase inhibitor (TKI), erlotinib. Overall, our study suggested the ability of fisetin to serve as a potential therapeutic agent on its capacity to attenuate the EMT program and inhibit migration, invasion and stem cell phenotype of lung cancer cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavonoides/uso terapéutico , Antígeno AC133/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Sinergismo Farmacológico , Clorhidrato de Erlotinib/uso terapéutico , Flavonoides/farmacología , Flavonoles , Humanos , Receptores de Hialuranos/análisis , Neoplasias Pulmonares , Invasividad Neoplásica/patología , Fenotipo , Células Madre/patología
9.
Diabetes ; 68(11): 2175-2190, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31439646

RESUMEN

Epithelial to mesenchymal transition (EMT) and wound vascularization are two critical interrelated processes that enable cutaneous wound healing. Zinc finger E-box binding homeobox 1 (ZEB1), primarily studied in the context of tumor biology, is a potent EMT activator. ZEB1 is also known to contribute to endothelial cell survival as well as stimulate tumor angiogenesis. The role of ZEB1 in cutaneous wounds was assessed using Zeb1+/- mice, as Zeb1-/- mice are not viable. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics was used to elucidate the effect of elevated ZEB1, as noted during hyperglycemia. Under different glycemic conditions, ZEB1 binding to E-cadherin promoter was investigated using chromatin immunoprecipitation. Cutaneous wounding resulted in loss of epithelial marker E-cadherin with concomitant gain of ZEB1. The dominant proteins downregulated after ZEB1 overexpression functionally represented adherens junction pathway. Zeb1+/- mice exhibited compromised wound closure complicated by defective EMT and poor wound angiogenesis. Under hyperglycemic conditions, ZEB1 lost its ability to bind E-cadherin promoter. Keratinocyte E-cadherin, thus upregulated, resisted EMT required for wound healing. Diabetic wound healing was improved in ZEB+/- as well as in db/db mice subjected to ZEB1 knockdown. This work recognizes ZEB1 as a key regulator of cutaneous wound healing that is of particular relevance to diabetic wound complication.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Adulto , Animales , Glucemia , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Diabetes Mellitus/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Regiones Promotoras Genéticas , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
10.
Phytomedicine ; 21(3): 340-7, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24176840

RESUMEN

Melanoma is very aggressive and major cause of mortality due to skin cancer. Herein, we studied the anticancer effects of berberine, a plant alkaloid, in combination with doxorubicin on murine melanoma B16F10 cells in vitro and in vivo. This drug combination strongly inhibited cell growth and induced cell death, and caused G2/M arrest in cell cycle together with a decrease in Kip1/p27. Berberine showed stronger inhibitory effect on ERK1/2 phosphorylation as compared to Akt phosphorylation, whereas the combination of the drugs showed greater inhibitory effect on Akt phosphorylation. In murine B16F10 xenograft, cells were implanted into mice and treated with vehicle (methyl cellulose) or berberine (100mg/kg of body weight/day by oral gavage) or doxorubicin (4 mg/kg of body weight/week by intraperitoneal injection) or combination of berberine and doxorubicin. Berberine alone did not show any considerable effect on tumor growth as observed with doxorubicin, however, the combination of the two drugs resulted in a significant and strong decrease in tumor volume (85%, p<0.005) and tumor weight (78%, p<0.05) as compared to control. Immunohistochemical analysis of tumor samples showed that drug combination decreased PCNA-positive cells (82%, p<0.001) and increased cleaved caspase-3 positive cells (3-fold, p<0.05) indicating inhibition of proliferation and an increase in apoptosis, respectively. Overall, our findings suggest that berberine and doxorubicin could be a novel combination to inhibit melanoma tumor growth.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Berberina/uso terapéutico , Caspasa 3/metabolismo , Doxorrubicina/uso terapéutico , Melanoma/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Berberina/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Doxorrubicina/farmacología , Quimioterapia Combinada , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Xenoinjertos , Melanoma/metabolismo , Ratones , Ratones Desnudos , Fosforilación , Extractos Vegetales/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA