Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 206(2): 446-451, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33277386

RESUMEN

Human regulatory T cells (Tregs) have been implicated in cancer immunotherapy and are also an emerging cellular therapeutic for the treatment of multiple indications. Although Treg stability during ex vivo culture has improved, methods to assess Treg stability such as bisulfite Sanger sequencing to determine the methylation status of the Treg-specific demethylated region (TSDR) have remained unchanged. Bisulfite Sanger sequencing is not only costly and cumbersome to perform, it is inaccurate because of relatively low read counts. Bisulfite next-generation sequencing, although more accurate, is a less accessible method. In this study, we describe the application of methylation-sensitive restriction enzymes (MSRE) and quantitative PCR (qPCR) to determine the methylation status of the TSDR. Using known ratios of Tregs and non-Tregs, we show that MSRE-qPCR can distinguish the methylation status of the TSDR in populations of cells containing increasing proportions of Tregs from 0 to 100%. In a comparison with values obtained from an established bisulfite next-generation sequencing approach for determining the methylation status of the TSDR, our MSRE-qPCR results were within 5% on average for all samples with a high percentage (>70%) of Tregs, reinforcing that MSRE-qPCR can be completed in less time than other methods with the same level of accuracy. The value of this assay was further demonstrated by quantifying differences in TSDR methylation status of Tregs treated with and without rapamycin during an ex vivo expansion culture. Together, we show that our novel application of the MSRE-qPCR to the TSDR is an optimal assay for accurate assessment of Treg purity.


Asunto(s)
Islas de CpG/genética , Enzimas de Restricción del ADN/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Linfocitos T Reguladores/inmunología , Células Cultivadas , Metilación de ADN , Desmetilación , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Especificidad de Órganos , Cultivo Primario de Células
2.
Blood ; 132(18): 1911-1921, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150207

RESUMEN

Recent studies have highlighted the promise of targeting tumor neoantigens to generate potent antitumor immune responses and provide strong motivation for improving our understanding of antigen-T-cell receptor (TCR) interactions. Advances in single-cell sequencing technologies have opened the door for detailed investigation of the TCR repertoire, providing paired information from TCRα and TCRß, which together determine specificity. However, a need remains for efficient methods to assess the specificity of discovered TCRs. We developed a streamlined approach for matching TCR sequences with cognate antigen through on-demand cloning and expression of TCRs and screening against candidate antigens. Here, we first demonstrate the system's capacity to identify viral-antigen-specific TCRs and compare the functional avidity of TCRs specific for a given antigen target. We then apply this system to identify neoantigen-specific TCR sequences from patients with melanoma treated with personalized neoantigen vaccines and characterize functional avidity of neoantigen-specific TCRs. Furthermore, we use a neoantigen-prediction pipeline to show that an insertion-deletion mutation in a putative chronic lymphocytic leukemia (CLL) driver gives rise to an immunogenic neoantigen mut-MGA, and use this approach to identify the mut-MGA-specific TCR sequence. This approach provides a means to identify and express TCRs, and then rapidly assess antigen specificity and functional avidity of a reconstructed TCR, which can be applied for monitoring antigen-specific T-cell responses, and potentially for guiding the design of effective T-cell-based immunotherapies.


Asunto(s)
Antígenos de Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Vacunas contra el Cáncer/uso terapéutico , Células Cultivadas , Clonación Molecular/métodos , Células HEK293 , Humanos , Células Jurkat , Leucemia Linfocítica Crónica de Células B/inmunología , Melanoma/inmunología , Melanoma/terapia , Receptores de Antígenos de Linfocitos T/genética
3.
Genome Res ; 22(11): 2241-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22800726

RESUMEN

Eliminating the bacterial cloning step has been a major factor in the vastly improved efficiency of massively parallel sequencing approaches. However, this also has made it a technical challenge to produce the modern equivalent of the Fosmid- or BAC-end sequences that were crucial for assembling and analyzing complex genomes during the Sanger-based sequencing era. To close this technology gap, we developed Fosill, a method for converting Fosmids to Illumina-compatible jumping libraries. We constructed Fosmid libraries in vectors with Illumina primer sequences and specific nicking sites flanking the cloning site. Our family of pFosill vectors allows multiplex Fosmid cloning of end-tagged genomic fragments without physical size selection and is compatible with standard and multiplex paired-end Illumina sequencing. To excise the bulk of each cloned insert, we introduced two nicks in the vector, translated them into the inserts, and cleaved them. Recircularization of the vector via coligation of insert termini followed by inverse PCR generates a jumping library for paired-end sequencing with 101-base reads. The yield of unique Fosmid-sized jumps is sufficiently high, and the background of short, incorrectly spaced and chimeric artifacts sufficiently low, to enable applications such as mapping of structural variation and scaffolding of de novo assemblies. We demonstrate the power of Fosill to map genome rearrangements in a cancer cell line and identified three fusion genes that were corroborated by RNA-seq data. Our Fosill-powered assembly of the mouse genome has an N50 scaffold length of 17.0 Mb, rivaling the connectivity (16.9 Mb) of the Sanger-sequencing based draft assembly.


Asunto(s)
Escherichia coli/genética , Vectores Genéticos/genética , Genoma Bacteriano , Genoma Fúngico , Biblioteca Genómica , Schizosaccharomyces/genética , Análisis de Secuencia de ADN/métodos , Animales , Reordenamiento Génico , Ratones , Ratones Endogámicos C57BL
4.
Genome Res ; 21(3): 494-504, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21212162

RESUMEN

Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys.


Asunto(s)
Artefactos , Bacterias/genética , ARN Ribosómico 16S/análisis , Bacterias/clasificación , Secuencia de Bases , Quimera/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Ribosómico/genética , Genómica , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , ARN Bacteriano/genética , Análisis de Secuencia de ADN/métodos
5.
Nat Med ; 25(2): 229-233, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664785

RESUMEN

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene1,2. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence. In vitro experiments in human cells and retinal explants demonstrated the molecular mechanism of action and nuclease specificity. Subretinal delivery of EDIT-101 in humanized CEP290 mice showed rapid and sustained CEP290 gene editing. A comparable surrogate non-human primate (NHP) vector also achieved productive editing of the NHP CEP290 gene at levels that met the target therapeutic threshold, and demonstrated the ability of CRISPR/Cas9 to edit somatic primate cells in vivo. These results support further development of EDIT-101 for LCA10 and additional CRISPR-based medicines for other inherited retinal disorders.


Asunto(s)
Edición Génica , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/fisiopatología , Animales , Línea Celular , Técnicas de Sustitución del Gen , Humanos , Ratones , Primates , Reproducibilidad de los Resultados , Visión Ocular
6.
Nat Genet ; 46(12): 1350-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326702

RESUMEN

Complete knowledge of the genetic variation in individual human genomes is a crucial foundation for understanding the etiology of disease. Genetic variation is typically characterized by sequencing individual genomes and comparing reads to a reference. Existing methods do an excellent job of detecting variants in approximately 90% of the human genome; however, calling variants in the remaining 10% of the genome (largely low-complexity sequence and segmental duplications) is challenging. To improve variant calling, we developed a new algorithm, DISCOVAR, and examined its performance on improved, low-cost sequence data. Using a newly created reference set of variants from the finished sequence of 103 randomly chosen fosmids, we find that some standard variant call sets miss up to 25% of variants. We show that the combination of new methods and improved data increases sensitivity by several fold, with the greatest impact in challenging regions of the human genome.


Asunto(s)
Variación Genética , Genoma Humano , Algoritmos , Secuencia de Bases , Mapeo Cromosómico , Frecuencia de los Genes , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Programas Informáticos
7.
PLoS One ; 7(6): e39242, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768065

RESUMEN

BACKGROUND: Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. METHODOLOGY/PRINCIPAL FINDINGS: We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children's Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn's disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). CONCLUSIONS/SIGNIFICANCE: Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.


Asunto(s)
Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/microbiología , Metagenoma , Adolescente , Adulto , Antibacterianos/uso terapéutico , Biodiversidad , Niño , Preescolar , Estudios de Cohortes , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Demografía , Diagnóstico Diferencial , Heces/microbiología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/clasificación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Complejo de Antígeno L1 de Leucocito/metabolismo , Masculino , Metagenoma/genética , Inducción de Remisión , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Programas Informáticos , Adulto Joven
8.
Curr Protoc Hum Genet ; Chapter 2: Unit 2.12, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19170031

RESUMEN

The method for SNP genotyping described in this unit is based on the commercially available Sequenom MassARRAY platform. The assay consists of an initial locus-specific PCR reaction, followed by single base extension using mass-modified dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream of the polymorphic site of interest. Using MALDI-TOF mass spectrometry, the distinct mass of the extended primer identifies the SNP allele.


Asunto(s)
Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alelos , Cartilla de ADN/genética , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA