Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 58(15-16): 4235-44, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18065764

RESUMEN

The possibility that a loss of pollen viability during dry storage in a freezer is caused by the reduced pollen capacity to enhance polyamine biosynthetic enzyme activity after rehydration was investigated using pollen grains of tomato (Solanum lycopersicum=Lycopersicon esculentum) stored at -30 degrees C under dry conditions for up to 42 months. Pollen grains showed normal germinability for at least 12 months in storage, but those stored for longer than 24 months exhibited a significant reduction in germinability and fruit-setting ability. This age-dependent reduction in pollen viability coincided with the extent to which the pollen lost the capacity to increase arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) activities and polyamine contents upon rehydration. Immunoblot analysis indicated that the capacity of pollen to translate ADC and SAMDC mRNAs was impaired in accordance with the loss of viability. Also, the capacity to synthesize proteins in general decreased with the increase in storage duration. The addition of 1 mM putrescine, spermidine, or spermine to incubation medium promoted germination, impregnation of pollen grains with 1 mM spermidine restored fertilization ability, and the addition of 1 mM spermidine to incubation medium promoted protein synthesis exclusively in pollen grains which had been stored for a long time. These results indicate that the reduction in viability of tomato pollen during long-term dry storage in a freezer involves a decline in the capacity to enhance gene translation for polyamine biosynthetic enzymes upon rehydration.


Asunto(s)
Criopreservación , Polen/metabolismo , Poliaminas/metabolismo , Solanum lycopersicum/enzimología , Agua/fisiología , Congelación , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Polen/fisiología , Biosíntesis de Proteínas
2.
Plant Cell Physiol ; 43(6): 619-27, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12091715

RESUMEN

Possible involvement of impaired polyamine biosynthesis in the poor performance of tomato pollen (Lycopersicon esculentum Mill.) at high temperatures was investigated. Incubation of pollen at 38 degrees C suppressed the increase of S-adenosylmethionine decarboxylase (SAMDC) activity in germinating pollen with little influence on arginine decarboxylase activity. Consequently, spermidine and spermine content in the pollen did not increase at 38 degrees C, while putrescine content increased at both 25 degrees C and 38 degrees C. High-temperature inhibition of pollen germination was alleviated by the addition of spermidine or spermine but not of putrescine to the germination medium. Cycloheximide inhibited SAMDC activity in parallel with pollen germination at 25 degrees C, whereas actinomycin D had no effect on either of them, indicating that enhanced SAMDC activity is associated with de novo protein synthesis. Incubation of crude enzyme extracts at 40 degrees C for 1 h did not affect SAMDC. In addition, high temperatures did not enhance protease activity in germinating pollen. These results indicate that low activity of SAMDC, probably due to impaired protein synthesis or functional enzyme formation, is a major cause for the poor performance of tomato pollen at high temperatures.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Polen/crecimiento & desarrollo , Poliaminas/metabolismo , Solanum lycopersicum/enzimología , Adenosilmetionina Descarboxilasa/antagonistas & inhibidores , Carboxiliasas/metabolismo , Cicloheximida/farmacología , Dactinomicina/farmacología , Endopeptidasas/metabolismo , Estabilidad de Enzimas , Calor , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Polen/efectos de los fármacos , Polen/enzimología , Poliaminas/farmacología , Putrescina/metabolismo , Putrescina/farmacología , Espermidina/metabolismo , Espermidina/farmacología , Espermina/metabolismo , Espermina/farmacología , Factores de Tiempo
3.
Plant Cell Physiol ; 43(2): 196-206, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11867699

RESUMEN

The possible involvement of polyamines in the chilling tolerance of spinach (Spinacia oleracea L.) was investigated focusing on photosynthesis. During chilling at 8/5C (day/night) for 6 d, S-adenosylmethionine decarboxylase (SAMDC) activity increased significantly in leaves in parallel with the increase in putrescine and spermidine (Spd) content in leaves and chloroplasts. Treatment of leaves with methylglyoxal-bis(guanylhydrazone) (MGBG), an SAMDC inhibitor, resulted in the deterioration of plant growth and photosynthesis under chilling conditions, which was reversed by the concomitant treatment with Spd through the roots. Plants treated with MGBG showed lower photochemical efficiency of PSII than either the control or plants treated with MGBG plus Spd during chilling and even after transfer to warm conditions, suggesting an increase of photoinhibition due to low Spd in chloroplasts. Indeed, MGBG-treated plants had much lower activities of thylakoid electron transport and enzymes in carbon metabolism as well as higher degrees of lipid peroxidation of thylakoid membranes compared to the control. These results indicate that the enhanced activity of SAMDC with a consequential rise of Spd in chloroplasts is crucial for the cold acclimation of the photosynthetic apparatus in spinach leaves.


Asunto(s)
Aclimatación/fisiología , Adenosilmetionina Descarboxilasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Spinacia oleracea/enzimología , Adenosilmetionina Descarboxilasa/genética , Carboxiliasas/genética , Carboxiliasas/metabolismo , Clorofila/metabolismo , Clorofila/efectos de la radiación , Cloroplastos/metabolismo , Frío , Transporte de Electrón/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Luz , Complejos de Proteína Captadores de Luz , Peroxidación de Lípido/efectos de los fármacos , Mitoguazona/farmacología , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermidina/metabolismo , Spinacia oleracea/crecimiento & desarrollo , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
4.
Plant Cell Physiol ; 45(6): 712-22, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15215506

RESUMEN

Polyamines play pivotal roles in plant defense to environmental stresses. However, stress tolerance of genetically engineered plants for polyamine biosynthesis has been little examined so far. We cloned spermidine synthase cDNA from Cucurbita ficifolia and the gene was introduced to Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in the transgenic plants. As compared with the wild-type plants, the T2 and T3 transgenic plants exhibited a significant increase in spermidine synthase activity and spermidine content in leaves together with enhanced tolerance to various stresses including chilling, freezing, salinity, hyperosmosis, drought, and paraquat toxicity. During exposure to chilling stress (5 degrees C), the transgenics displayed a remarkable increase in arginine decarboxylase activity and conjugated spermidine contents in leaves compared to the wild type. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenics than in the wild type under chilling stress. These genes included those for stress-responsive transcription factors such as DREB and stress-protective proteins like rd29A. These results strongly suggest an important role for spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms in plants under stress conditions.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Espermidina Sintasa/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carboxiliasas/metabolismo , Frío/efectos adversos , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Exposición a Riesgos Ambientales , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Transducción de Señal/genética , Espermidina/metabolismo , Espermidina Sintasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Transgenes/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA