Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Heredity (Edinb) ; 132(5): 267-274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538720

RESUMEN

Organisms have diverse biological clocks synchronised with environmental cycles depending on their habitats. Anticipation of tidal changes has driven the evolution of circatidal rhythms in some marine species. In the freshwater snail, Semisulcospira reiniana, individuals in nontidal areas exhibit circadian rhythms, whereas those in tidal areas exhibit both circadian and circatidal rhythms. We investigated whether the circatidal rhythms are genetically determined or induced by environmental cycles. The exposure to a simulated tidal cycle did not change the intensity of circatidal rhythm in individuals in the nontidal population. However, snails in the tidal population showed different activity rhythms depending on the presence or absence of the exposure. Transcriptome analysis revealed that genes with circatidal oscillation increased due to entrainment to the tidal cycle in both populations and dominant rhythmicity was consistent with the environmental cycle. These results suggest plasticity in the endogenous rhythm in the gene expression in both populations. Note that circatidal oscillating genes were more abundant in the tidal population than in the nontidal population, suggesting that a greater number of genes are associated with circatidal clocks in the tidal population compared to the nontidal population. This increase of circatidal clock-controlled genes in the tidal population could be caused by genetic changes in the biological clock or the experience of tidal cycle in the early life stage. Our findings suggest that the plasticity of biological rhythms may have contributed to the adaptation to the tidal environment in S. reiniana.


Asunto(s)
Ritmo Circadiano , Agua Dulce , Caracoles , Transcriptoma , Animales , Caracoles/genética , Caracoles/fisiología , Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Relojes Biológicos/genética , Ecosistema
2.
Inorg Chem ; 61(32): 12719-12725, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35921586

RESUMEN

Pressure-induced phase transitions in a monoclinically distorted LiNbO3-type CuNbO3 with triangularly coordinated Cu and octahedrally coordinated Nb were experimentally and computationally investigated. Phase transitions into GdFeO3-type or NaIO3-type structures generally observed in LiNbO3-type compounds below 30 GPa were not detected in CuNbO3 even at the maximum experimental pressure, 32.4 GPa. Our density functional theory calculations revealed that the phase transition is suppressed by the preference for the CuO3 triangular coordination environment, which reduces the total internal energy. This study clarifies that the change in the coordination environment of given ions can affect the pressure-induced phase transition.

3.
Biol Lett ; 17(7): 20210194, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314641

RESUMEN

Intrapopulation variation in behaviour, including activity, boldness and aggressiveness, is becoming more widely recognized and is hypothesized to substantially affect ecological and evolutionary dynamics. Although previous studies used candidate-gene approaches and genome-wide association analyses to identify genes correlated with variations in activity and aggressiveness, behavioural variation may not be fully captured in the nuclear genome, as it does not account for mitochondrial genomes. Mitochondrial genes encode products that are key regulators of the cellular energy-producing pathways in metabolic processes and are thought to play a significant role in life-history and reproductive traits. In this study, we considered many isofemale lines of Drosophila immigrans established from two wild populations to investigate whether intrapopulation variation in the mitochondrial genome affected activity level within this species. We identified two major haplogroups in these populations, and activity levels in both larvae and adults differed significantly between the two haplogroups. This result indicated that intrapopulation variation in activity level may be partially controlled by mitochondrial genes, along with the interaction between nuclear and mitochondrial genes and the age of individual organisms.


Asunto(s)
Drosophila , Genoma Mitocondrial , Animales , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Drosophila/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Mitocondrias/genética
4.
Biol Lett ; 17(6): 20200761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34102071

RESUMEN

Odonata species display a remarkable diversity of colour patterns, including intrasexual polymorphisms. In the damselfly (Ischnura senegalensis), the expression of a sex-determining transcription factor, the doublesex (Isdsx) gene is reportedly associated with female colour polymorphism (CP) (gynomorph for female-specific colour and andromorph for male-mimicking colour). Here, the function of Isdsx in thoracic coloration was investigated by electroporation-mediated RNA interference (RNAi). RNAi of the Isdsx common region in males and andromorphic females reduced melanization and thus changed the colour pattern into that of gynomorphic females, while the gynomorphic colour pattern was not affected. By contrast, RNAi against the Isdsx long isoform produced no changes, suggesting that the Isdsx short isoform is important for body colour masculinization in both males and andromorphic females. When examining the expression levels of five genes with differences between sexes and female morphs, two melanin-suppressing genes, black and ebony, were expressed at higher levels in the Isdsx RNAi body area than a control area. Therefore, the Isdsx short isoform may induce thoracic colour differentiation by suppressing black and ebony, thereby generating female CP in I. senegalensis. These findings contribute to the understanding of the molecular and evolutionary mechanisms underlying female CP in Odonata.


Asunto(s)
Proteínas de Insectos/genética , Odonata , Pigmentación/genética , Animales , Evolución Biológica , Femenino , Masculino
5.
New Phytol ; 227(6): 1872-1884, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32392621

RESUMEN

Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.


Asunto(s)
Zamiaceae , Ecosistema , Especiación Genética , Geografía , México , Filogenia
6.
Heredity (Edinb) ; 122(1): 81-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29713090

RESUMEN

Many Odonata species exhibit female-limited polymorphisms, where one morph is similar to the conspecific male in body color and other traits (andromorph), whereas one or more other morphs differ from the male (gynomorphs). Here we investigated the differentially expressed transcripts (DETs) among males and two female morph groups (gynomorphs and andromorphs) using RNA-seq to identify candidate transcripts encoding female-limited polymorphisms in the damselfly Ischnura senegalensis. Seven DETs that had significantly different expression levels between males and gynomorphs, but not between males and andromorphs, were identified. The expression levels of four of these candidate genes, doublesex (dsx), black, ebony, and chaoptin (chp), were selected for further analysis using qRT-PCR. Sequence analysis of the dsx amplicons revealed that this gene produced at least three transcripts. Two short transcripts were mainly expressed in males and andromorphs, whereas the long transcript was specifically expressed in both morph female groups; that is, the expression pattern of the dsx splice variants in andromorphs was an intermediate between that of males and gynomorphs. Because the dsx gene functions as a transcription factor that regulates the sex-specific expression of multiple genes, its splice variants in I. senegalensis may explain why the andromorph is female but exhibits some masculinized traits. Because we did not detect different coding sequences of the candidate genes among the different morphs, a diallelic genomic region controlling alternative splicing of dsx, thus determining female-limited polymorphism in I. senegalensis most likely lies in a non-coding region of the dsx gene or in a gene upstream of it.


Asunto(s)
Empalme Alternativo/genética , Odonata/genética , Pigmentación/genética , Caracteres Sexuales , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Evolución Molecular , Exones/genética , Femenino , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Masculino , Glicoproteínas de Membrana/genética
7.
Biol Lett ; 15(7): 20190228, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31337289

RESUMEN

Polymorphisms in a population are expected to increase the growth rate and the stability of the population, leading to the expansion of geographical distribution and mitigation of extinction risk of a species. However, the generality of such ecological consequences of colour polymorphism remains uncertain. Here, via a comparative approach, we assessed whether colour polymorphisms influence climatic niche breadth and extinction risk in some groups of damselflies, butterflies and vertebrates. The climatic niche breadth was greater, and extinction risk was lower in polymorphic species than in monomorphic species in all taxa analysed. The results suggest that colour polymorphism facilitates range expansion and species persistence.


Asunto(s)
Mariposas Diurnas , Odonata , Animales , Color , Ecología , Ecosistema
8.
Biosci Biotechnol Biochem ; 83(9): 1721-1728, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31072263

RESUMEN

Daidai (bitter orange, Citrus aurantium) is characterized by its fresh citrus scent. In Japanese cuisine, its juice is an important ingredient. As tons of industrial waste is obtained while processing the daidai juice, additional utilization of this waste has great social value. In our study, we prepared the essential oil from the waste obtained during daidai juice processing and demonstrated that the oil activates human TRPA1 (hTRPA1). This oil contains 10 types of terpenes, all of which activated hTRPA1 with an EC50 value of 6-167 µM. To our knowledge, this study is the first to show a hTRPA1 activation by five terpenes: linalyl acetate, geranyl acetate, osthole, geranyl propionate, and neryl acetate. Because physiological benefits of TRPA1 agonists, such as enhancement of energy metabolism and promotion of skin barrier recovery, have been reported, the oil could be a promising ingredient for anti-obesity food products and cosmetics.


Asunto(s)
Citrus/química , Aceites Volátiles/química , Canal Catiónico TRPA1/agonistas , Terpenos/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Humanos
9.
Proc Biol Sci ; 285(1871)2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29343595

RESUMEN

Although genetic diversity within a population is suggested to improve population-level fitness and productivity, the existence of these effects is controversial because empirical evidence for an ecological effect of genetic diversity and the underlying mechanisms is scarce and incomplete. Here, we show that the natural single-gene behavioural polymorphism (Rover and sitter) in Drosophila melanogaster has a positive effect on population fitness. Our simple numerical model predicted that the fitness of a polymorphic population would be higher than that expected with two monomorphic populations, but only under balancing selection. Moreover, this positive diversity effect of genetic polymorphism was attributable to a complementarity effect, rather than to a selection effect. Our empirical tests using the behavioural polymorphism in D. melanogaster clearly supported the model predictions. These results provide direct evidence for an ecological effect of genetic diversity on population fitness and its condition dependence.


Asunto(s)
Drosophila melanogaster/genética , Aptitud Genética , Polimorfismo Genético , Animales , Locomoción , Modelos Genéticos
10.
Proc Natl Acad Sci U S A ; 111(42): 15144-8, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25294931

RESUMEN

Animals with color vision use color information in intra- and interspecific communication, which in turn may drive the evolution of conspicuous colored body traits via natural and sexual selection. A recent study found that the transparent wings of small flies and wasps in lower-reflectance light environments display vivid and stable structural color patterns, called "wing interference patterns" (WIPs). Such WIPs were hypothesized to function in sexual selection among small insects with wing displays, but this has not been experimentally verified. Here, to our knowledge we present the first experimental evidence that WIPs in males of Drosophila melanogaster are targets of mate choice from females, and that two different color traits--saturation and hue--experience directional and stabilizing sexual selection, respectively. Using isogenic lines from the D. melanogaster Genetic Reference Panel, we compare attractiveness of different male WIPs against black and white visual backgrounds. We show that males with more vivid wings are more attractive to females than are males with dull wings. Wings with a large magenta area (i.e., intermediate trait values) were also preferred over those with a large blue or yellow area. These experimental results add a visual element to the Drosophila mating array, integrating sexual selection with elements of genetics and evo-devo, potentially applicable to a wide array of small insects with hyaline wings. Our results further underscore that the mode of sexual selection on such visual signals can differ profoundly between different color components, in this case hue and saturation.


Asunto(s)
Drosophila melanogaster/genética , Conducta Sexual Animal , Alas de Animales/fisiología , Animales , Color , Femenino , Luz , Masculino , Fenotipo , Pigmentación , Análisis de Regresión , Selección Genética , Transducción de Señal
11.
Mol Ecol ; 25(18): 4450-60, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27501054

RESUMEN

What limits a species' distribution in the absence of physical barriers? Genetic load due to asymmetric gene flow and the absence of genetic variation due to lack of gene flow are hypothesized to constrain adaptation to novel environments in marginal populations, preventing range expansion. Here, we examined the genetic structure and geographic variation in morphological traits in two damselflies (Ischnura asiatica and I. senegalensis) along a latitudinal gradient in Japan, which is the distribution centre of I. asiatica and the northern limit of I. senegalensis. Genomewide genetic analyses found a loss of genetic diversity at the edge of distribution in I. senegalensis but consistently high diversity in I. asiatica. Gene flow was asymmetric in a south-north direction in both species. Although body size and wing loading showed decreasing latitudinal clines (smaller in north) in I. asiatica in Japan, increasing latitudinal clines (larger in north) in these phenotypic markers were observed in I. senegalensis, particularly near the northern boundary, which coincided well with the location where genetic diversity began a sharp decline. In ectothermic animals, increasing latitudinal cline in these traits was suggested to be established when they failed to adapt to thermal gradient. Therefore, our findings support the possibility that a lack of genetic variation rather than geneflow swamping is responsible for the constraint of adaptation at the margin of geographic distribution.


Asunto(s)
Adaptación Fisiológica/genética , Variación Genética , Odonata/genética , Animales , Tamaño Corporal , Genética de Población , Geografía , Japón , Alas de Animales
12.
Front Zool ; 13: 46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27766110

RESUMEN

Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.

13.
J Plant Res ; 128(6): 933-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26354759

RESUMEN

Negative frequency-dependent selection derived from positive frequency-dependent foraging is the best-known selection force maintaining genetic polymorphism within a population. However, in flowering plants, positive frequency-dependent foraging by pollinators is expected to accelerate the loss of low-frequency morphs by conferring a fitness advantage to the common morph, leading to monomorphism. In Japan, a non-native species, Sisyrinchium sp., exhibits conspicuous flower color polymorphism within a population comprising both purple morphs (homozygous recessive) and white morphs (heterozygous or homozygous dominant). Here we quantified genotype-specific reproductive success in order to reveal the contribution of overdominant selection on the maintenance of flower color polymorphism in this species. In artificial pollination experiments using individuals with identified genotypes, female reproductive success was higher in the heterozygote than in either homozygote. The frequency of purple morphs in natural populations (ca. 31%) is similar to the frequency predicted by overdominant selection (25%). Our results suggest that overdominant selection contributes to the maintenance of color morphs in the natural population of this species.


Asunto(s)
Iridaceae/genética , Pigmentación/genética , Polimorfismo Genético , Selección Genética , Flores/genética , Especies Introducidas , Japón , Reproducción
14.
Evol Lett ; 8(3): 397-405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38818415

RESUMEN

Non-genetic variation is the phenotypic variation induced by the differential expression of a genotype in response to varying environmental cues and is broadly categorized into two types: phenotypic plasticity and developmental noise. These aspects of variation have been suggested to play an important role in adaptive evolution. However, the mechanisms by which these two types of non-genetic variations influence the evolutionary process are currently poorly understood. Using a machine-learning-based phenotyping tool, we independently quantified phenotypic plasticity and developmental noise in the wing morphological traits of the fruit fly Drosophila simulans. Utilizing a rearing experiment, we demonstrated plastic responses in both wing size and shape as well as non-zero heritability of both phenotypic plasticity and developmental noise, which suggests that adaptive phenotypic plasticity can evolve via genetic accommodation in the wing morphology of D. simulans. We found a positive correlation between phenotypic plasticity and developmental noise, while the correlation between the plastic response to three kinds of environmental factors that were examined (nutrient condition, temperature, and light-dark cycle) was poor. These results suggest that phenotypic plasticity and developmental noise contribute to evolvability in a similar manner, however, the mechanisms that underlie the correspondence between these two types of variation remain to be elucidated.

15.
Nat Ecol Evol ; 8(1): 83-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932383

RESUMEN

Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.


Asunto(s)
Odonata , Animales , Femenino , Masculino , Odonata/genética , Polimorfismo Genético , Genómica
16.
ACS Appl Mater Interfaces ; 15(46): 53665-53670, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948622

RESUMEN

Contrary to partially substituted systems, WO3 molecular sieves that exclusively comprise a d0 transition metal ion and do not possess template ions in the cavity are a new class of materials for photocatalysis owing to their framework structure. Because WO3 thermodynamically lacks proton-reduction capability, exploring diverse synthetic approaches of other materials is desirable for facilitating utilization as H2 evolution and water splitting systems. Herein, we report an efficient approach for the protonation of Ag2Ta4O11 to afford H2Ta4O11 for application as a H2 molecular sieve. Hydrogen reduction of Ag2Ta4O11 at 300 °C and post-treatment using HNO3 afforded H2Ta4O11. Characterizations of H2Ta4O11, coupled with density functional theory (DFT) calculations, reveal that the intrinsic structure of Ag2Ta4O11 is maintained. Moreover, H+ is generated from H2 oxidation and forms OH, and the orientation of OH is parallel to that of the ab plane. Desorption and adsorption of H2 within H2Ta4O11 were achieved by heating H2Ta4O11 to above 90 °C. This is attributed to positive thermal expansion, as confirmed by high-temperature X-ray diffraction. H2Ta4O11 is an active heterogeneous photocatalyst for the half-reactions of water splitting. Moreover, deuteration experiments of H2Ta4O11 in D2O suggest its capability as a H2-D2 conversion catalyst. Furthermore, H2Ta4O11 functions as an active synthetic precursor for new tantalate materials, the direct synthesis of which is challenging.

17.
Evolution ; 77(4): 1145-1157, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801936

RESUMEN

Frequency-dependent selection (FDS) is an evolutionary regime that can maintain or reduce polymorphisms. Despite the increasing availability of polymorphism data, few effective methods are available for estimating the gradient of FDS from the observed fitness components. We modeled the effects of genotype similarity on individual fitness to develop a selection gradient analysis of FDS. This modeling enabled us to estimate FDS by regressing fitness components on the genotype similarity among individuals. We detected known negative FDS on the visible polymorphism in a wild Arabidopsis and damselfly by applying this analysis to single-locus data. Further, we simulated genome-wide polymorphisms and fitness components to modify the single-locus analysis as a genome-wide association study (GWAS). The simulation showed that negative or positive FDS could be distinguished through the estimated effects of genotype similarity on simulated fitness. Moreover, we conducted the GWAS of the reproductive branch number in Arabidopsis thaliana and found that negative FDS was enriched among the top-associated polymorphisms of FDS. These results showed the potential applicability of the proposed method for FDS on both visible polymorphism and genome-wide polymorphisms. Overall, our study provides an effective method for selection gradient analysis to understand the maintenance or loss of polymorphism.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo Genético , Humanos , Genotipo , Genoma , Evolución Biológica , Polimorfismo de Nucleótido Simple
18.
Sci Rep ; 13(1): 21940, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114661

RESUMEN

Seasonal environmental change is one of the most rapid and striking environmental variables. Although relatively rapid adaptation to environmental changes over several years or several decades has been described in many taxa, rapid responses to seasonal environments are delicate, and therefore, the detection of the evolutionary responses requires sensitive methods. In this study, we examined seasonal changes in phenotypes related to thermal tolerance and morphological traits of Drosophila lutescens collected at the spring and autumn periods from a single location. We first demonstrated that flies in the two seasonal periods were almost genetically identical using double-digest restriction site-associated DNA sequencing and analysis. Using an experimental design to eliminate the effect of possible confounding factors that influence phenotypes (i.e., maternal effects and the environmental conditions in which each phenotype was analyzed), we showed that the heat tolerance of D. lutescens was significantly higher in the autumn population than in the spring population. Furthermore, cold tolerance was slightly higher in the spring population than in the autumn one. Although wing length and thorax length did not change significantly between seasons, the ratio of wing length to thorax length changed significantly between them. These results suggest that seasonal environmental heterogeneity induces rapid phenotypic changes within a year. Finally, we discuss the possibility of rapid evolutionary responses to seasonal changes.


Asunto(s)
Drosophila , Animales , Drosophila/genética , Estaciones del Año , Fenotipo
19.
Ecol Evol ; 12(12): e9616, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36518620

RESUMEN

Cities experience changes in abiotic factors, such as warming, increases in noise and light. These changes can lead to phenotypic changes. Several studies have revealed that altered environments change phenotypes in plants and animals in cities. However, limited studies have isolated evolutionary from nongenetic changes. Here, we analyzed the evolution of thermal tolerance and diurnal activity patterns in the urban population of the fruit pest, Drosophila suzukii. Urban and rural isofemale lines were reared under constant conditions. We compared the lower and upper thermal limits (CTmin and CTmax, respectively), and effects of temperature exposure on the thermal limits of urban and rural populations. Common garden experiments showed that urban populations exhibit a lower CTmin than rural populations, suggesting genetic difference in CTmin among populations. On the other hand, the difference in CTmax between urban and rural populations was not significant. Exposure to cold temperature did not affect CTmin in both urban and rural populations. In contrast, exposure to hot temperature increased CTmax especially in urban population, suggesting that urban populations evolved in response to urban heat. We also investigated the daily activity patterns of urban and rural populations and the effect of lifelong artificial light at night on daily activity. We found that night-time light (dim light) reduced the total amount of activity compared to dark night condition. In addition, dim light at night altered the daily rhythm of activity and increased the activity rate at night. The effect of night light on total activity was less in urban than that in rural populations, suggesting that populations in cities evolved to mitigate decreased activity under night light. Our results showed that environmental temperature and artificial light at night evolutionarily and plastically influence ecologically important traits, such as temperature tolerance and diurnal activity.

20.
Sci Rep ; 12(1): 1318, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079049

RESUMEN

One of the most important questions in evolutionary biology is how the spatial distribution of species is limited. Asymmetric gene flow from core populations is suggested to increase the number of poorly adapted immigrants in the populations at the range edge. Genetic load due to migration, i.e., migration load, should prevent adaptation to the local habitat, leading to decreases in distribution range via local extinction or the limiting range expansion. However, few experimental studies have examined the effects of immigration on fitness and natural selection within recipient populations. To investigate the influence of migration load on the evolution of distribution range, we performed field and laboratory observations as well as population transcriptomics for the common river snail, Semisulcospira reiniana. This species meets the conditions that migration from source populations can prevent local adaptation in a sink population because they inhabit the broader range of environments, including middle/upper reaches of a river and estuaries within a single river and they may be more vulnerable to being swept away by water currents due to lowered spontaneous (upward) locomotion activity. We found that river steepness was related to the lower distribution limit of S. reiniana, with a narrower distribution range in the steeper river. Population transcriptomic analysis showed that gene flow was heavily asymmetric from the upstream populations to downstream ones in the steep river, suggesting a greater migration load in the steep river. The number of genes putatively involved in adaptation to the local habitat was lower in the steep river than in the gentle river. Gene expression profiles suggested that individuals achieve better local adaptation in the gentle river. Laboratory experiments suggested that evolutionary differences in salinity tolerance among local populations were only found in the gentle river. Our results consistent with the hypothesis that migration load owing to asymmetric gene flow disturbs local adaptation and restricts the distribution range of river snails.


Asunto(s)
Migración Animal/fisiología , Evolución Molecular , Flujo Génico , Caracoles/genética , Transcriptoma/genética , Altitud , Animales , Ecosistema , Femenino , Carga Genética , Masculino , Fenotipo , Ríos , Tolerancia a la Sal/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA