Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 30(11): 1006-1019, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33822956

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. The administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for 7 weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Distrofina/deficiencia , Humanos , Ratones , Ratones Endogámicos mdx , Contracción Muscular/genética , Debilidad Muscular/genética , Debilidad Muscular/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Distrofia Muscular de Duchenne/patología , Fenotipo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
2.
Development ; 147(21)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32878913

RESUMEN

Temple and Kagami-Ogata syndromes are genomic imprinting diseases caused by maternal and paternal duplication of human chromosome 14, respectively. They exhibit different postnatal muscle-related symptoms as well as prenatal placental problems. Using the mouse models for these syndromes, it has been demonstrated that retrotransposon gag like 1 [Rtl1, also known as paternally expressed 11 (Peg11)] located in the mouse orthologous imprinted region is responsible for the prenatal placental problems because it is an essential placental gene for maintenance of fetal capillary network during gestation. However, the causative imprinted gene for the postnatal muscle-related symptoms remains unknown. Here, we demonstrate that Rtl1 also plays an important role in fetal/neonatal skeletal muscle development: its deletion and overproduction in mice lead to neonatal lethality associated with severe but distinct skeletal muscle defects, similar to those of Temple and Kagami-Ogata syndromes, respectively. Thus, it is strongly suggested that RTL1 is the major gene responsible for the muscle defects in addition to the placental defects in these two genomic imprinting diseases. This is the first example of an LTR retrotransposon-derived gene specific to eutherians contributing to eutherian skeletal muscle development.


Asunto(s)
Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Músculos/anomalías , Proteínas Gestacionales/deficiencia , Animales , Animales Recién Nacidos , Diferenciación Celular , Proliferación Celular , Desmina/metabolismo , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Genéticos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculos/embriología , Músculos/patología , Mutación/genética , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Síndrome , Factores de Tiempo
3.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203473

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common type of neuromuscular disease caused by mutations in the DMD gene encoding dystrophin protein. To quantitively assess human dystrophin protein in muscle biopsy samples, it is imperative to consistently detect as low as 0.003% of the dystrophin protein relative to the total muscle protein content. The quantitation of dystrophin protein has traditionally been conducted using semiquantitative immunoblotting or immunohistochemistry; however, there is a growing need to establish a more precise quantitative method by employing liquid chromatography-mass spectrometry (LC-MS) to measure dystrophin protein. In this study, a novel quantification method was established using a mouse experiment platform applied to the clinical quantification of human dystrophin protein. The method using a spike-in approach with a triple quadrupole LC-MS quantitated the amount of dystrophin in wild-type and human DMD transgenic mice but not in DMD-null mice. In conclusion, we established a quantitating method of dystrophin using HPLC-LC-MS with a novel spike-in approach. These results indicate that our methodology could be applied to several LC-MS devices to enable the accurate measurement of dystrophin protein in patients with DMD.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Ratones , Humanos , Distrofina/genética , Cromatografía Líquida con Espectrometría de Masas , Músculo Esquelético , Proteínas Musculares , Ratones Noqueados , Ratones Transgénicos
4.
Mol Cell Proteomics ; 19(12): 2047-2068, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32994316

RESUMEN

The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC-MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.


Asunto(s)
Progresión de la Enfermedad , Distrofia Muscular de Duchenne/genética , Mutación/genética , Proteómica , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Reproducibilidad de los Resultados , Regulación hacia Arriba
5.
J Infect Chemother ; 28(2): 347-351, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34774431

RESUMEN

Genetic testing using reverse transcriptase real-time polymerase chain reaction (rRT-PCR) is the mainstay of diagnosis of COVID-19. However, it has not been fully investigated whether infectious viruses are contained in SARS-CoV-2 genome-positive specimens examined using the rRT-PCR test. In this study, we examined the correlation between the threshold Cycle (Ct) value obtained from the rRT-PCR test and virus isolation in cultured cells, using 533 consecutive clinical specimens of COVID-19 patients. The virus was isolated from specimens with a Ct value of less than 30 cycles, and the lower the Ct value, the more efficient the isolation rate. A cytopathic effect due to herpes simplex virus type 1 contamination was observed in one sample with a Ct value of 35 cycles. In a comparison of VeroE6/TMPRSS2 cells and VeroE6 cells used for virus isolation, VeroE6/TMPRSS2 cells isolated the virus 1.7 times more efficiently than VeroE6 cells. There was no significant difference between the two cells in the mean Ct value of the detectable sample. In conclusion, Lower Ct values in the PCR test were associated with higher virus isolation rates, and VeroE6/TMPRSS2 cells were able to isolate viruses more efficiently than VeroE6 cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Línea Celular , Pruebas Diagnósticas de Rutina , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807264

RESUMEN

Skeletal muscle regeneration is a well-organized process that requires remodeling of the extracellular matrix (ECM). In this study, we revealed the protective role of periostin, a matricellular protein that binds to several ECM proteins during muscle regeneration. In intact muscle, periostin was localized at the neuromuscular junction, muscle spindle, and myotendinous junction, which are connection sites between muscle fibers and nerves or tendons. During muscle regeneration, periostin exhibited robustly increased expression and localization at the interstitial space. Periostin-null mice showed decreased muscle weight due to the loss of muscle fibers during repeated muscle regeneration. Cultured muscle progenitor cells from periostin-null mice showed no deficiencies in their proliferation, differentiation, and the expression of Pax7, MyoD, and myogenin, suggesting that the loss of muscle fibers in periostin-null mice was not due to the impaired function of muscle stem/progenitor cells. Periostin-null mice displayed a decreased number of CD31-positive blood vessels during muscle regeneration, suggesting that the decreased nutritional supply from blood vessels was the cause of muscle fiber loss in periostin-null mice. These results highlight the novel role of periostin in maintaining muscle mass during muscle regeneration.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Regeneración/fisiología , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/fisiología , Diferenciación Celular , Uniones Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Tendones/metabolismo , Cicatrización de Heridas/fisiología
7.
BMC Med ; 18(1): 343, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208172

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS: To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS: Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS: nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados
8.
Muscle Nerve ; 62(3): 413-418, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32496590

RESUMEN

INTRODUCTION: Phospholipids are essential components of cellular membranes and are closely associated with cellular functions, but relationships involving skeletal muscle phospholipid profiles and their physiological phenotypes have remained unclear. METHODS: We carried out comprehensive phospholipid analyses using liquid chromatography-tandem mass spectrometry to determine the phospholipid profiles of skeletal muscles derived from muscle-wasting mouse models, including denervated and Duchenne muscular dystrophy mouse models (mdx) as well as rescued mdx mice expressing truncated dystrophin. RESULTS: Consistent phosphatidylcholine and phosphatidylethanolamine alterations in skeletal muscles isolated from denervated and mdx mice were observed. Notably, the levels of these phospholipids binding polyunsaturated fatty acids were reduced in denervated and mdx muscles. Moreover, rescuing the mdx pathology by expressing truncated dystrophin led to the restoration of phospholipid profiles. DISCUSSION: Our findings support the hypothesis that phospholipid profiles of the skeletal muscle may be associated with skeletal muscle function.


Asunto(s)
Glicerofosfolípidos/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Fenotipo , Espectrometría de Masas en Tándem
9.
Mol Ther ; 27(11): 2005-2017, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31416775

RESUMEN

Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Exones , Regulación de la Expresión Génica , Morfolinos/genética , Distrofia Muscular de Duchenne/genética , Mutación , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Distrofia Muscular de Duchenne/diagnóstico , Fenotipo , Eliminación de Secuencia
10.
Mol Ther ; 27(1): 76-86, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30448197

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, which codes for dystrophin. Because the progressive and irreversible degeneration of muscle occurs from childhood, earlier therapy is required to prevent dystrophic progression. Exon skipping by antisense oligonucleotides called phosphorodiamidate morpholino oligomers (PMOs), which restores the DMD reading frame and dystrophin expression, is a promising candidate for use in neonatal patients, yet the potential remains unclear. Here, we investigate the systemic efficacy and safety of early exon skipping in dystrophic dog neonates. Intravenous treatment of canine X-linked muscular dystrophy in Japan dogs with a 4-PMO cocktail resulted in ∼3%-27% in-frame exon 6-9 skipping and dystrophin restoration across skeletal muscles up to 14% of healthy levels. Histopathology was ameliorated with the reduction of fibrosis and/or necrosis area and centrally nucleated fibers, significantly in the diaphragm. Treatment induced cardiac multi-exon skipping, though dystrophin rescue was not detected. Functionally, treatment led to significant improvement in the standing test. Toxicity was not observed from blood tests. This is the first study to demonstrate successful multi-exon skipping treatment and significant functional improvement in dystrophic dogs. Early treatment was most beneficial for respiratory muscles, with implications for addressing pulmonary malfunction in patients.


Asunto(s)
Exones/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Perros , Distrofina/genética , Distrofina/metabolismo , Morfolinos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Oligonucleótidos Antisentido/genética , Sistemas de Lectura/genética
11.
BMC Musculoskelet Disord ; 21(1): 479, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32693782

RESUMEN

BACKGROUND: Previous research indicated that nitric oxide synthase (NOS) is the key molecule for S-nitrosylation of ryanodine receptor 1 (RyR1) in DMD model mice (mdx mice) and that both neuronal NOS (nNOS) and inducible NOS (iNOS) might contribute to the reaction because nNOS is mislocalized in the cytoplasm and iNOS expression is higher in mdx mice. We investigated the effect of iNOS on RyR1 S-nitrosylation in mdx mice and whether transgenic expression of truncated dystrophin reduced iNOS expression in mdx mice or not. METHODS: Three- to 4-month-old C57BL/6 J, mdx, and transgenic mdx mice expressing exon 45-55-deleted human dystrophin (Tg/mdx mice) were used. We also generated two double mutant mice, mdx iNOS KO and Tg/mdx iNOS KO to reveal the iNOS contribution to RyR1 S-nitrosylation. nNOS and iNOS expression levels in skeletal muscle of these mice were assessed by immunohistochemistry (IHC), qRT-PCR, and Western blotting. Total NOS activity was measured by a citrulline assay. A biotin-switch method was used for detection of RyR1 S-nitrosylation. Statistical differences were assessed by one-way ANOVA with Tukey-Kramer post-hoc analysis. RESULTS: mdx and mdx iNOS KO mice showed the same level of RyR1 S-nitrosylation. Total NOS activity was not changed in mdx iNOS KO mice compared with mdx mice. iNOS expression was undetectable in Tg/mdx mice expressing exon 45-55-deleted human dystrophin, but the level of RyR1 S-nitrosylation was the same in mdx and Tg/mdx mice. CONCLUSION: Similar levels of RyR1 S-nitrosylation and total NOS activity in mdx and mdx iNOS KO demonstrated that the proportion of iNOS in total NOS activity was low, even in mdx mice. Exon 45-55-deleted dystrophin reduced the expression level of iNOS, but it did not correct the RyR1 S-nitrosylation. These results indicate that iNOS was not involved in RyR1 S-nitrosylation in mdx and Tg/mdx mice muscles.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Óxido Nítrico Sintasa de Tipo II , Canal Liberador de Calcio Receptor de Rianodina , Animales , Distrofina/genética , Distrofina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Canal Liberador de Calcio Receptor de Rianodina/genética
12.
Proc Natl Acad Sci U S A ; 114(16): 4213-4218, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373570

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMDJ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMDJ dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMDJ dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.


Asunto(s)
Cardiomiopatías/terapia , Péptidos de Penetración Celular/farmacología , Distrofina/metabolismo , Exones , Morfolinos/farmacología , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animales , Cardiomiopatías/etiología , Modelos Animales de Enfermedad , Perros , Femenino , Terapia Genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/complicaciones , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética
13.
Biochem Biophys Res Commun ; 520(1): 179-185, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31585729

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating muscle disorder caused by frameshift mutations in the DMD gene. DMD involves cardiac muscle, and the presence of ventricular arrhythmias or congestive failure is critical for prognosis. Several novel therapeutic approaches are being evaluated in ongoing clinical trials. Among them, exon-skipping therapy to correct frameshift mutations with antisense oligonucleotides is promising; however, their therapeutic efficacies on cardiac muscle in vivo remain unknown. In this study, we established induced-pluripotent stem cells (iPSCs) from T cells from a DMD patient carrying a DMD-exon 46-55 deletion, differentiated the iPSCs into cardiomyocytes, and treated them with phosphorodiamidate morpholino oligomers. The efficiency of exon-45 skipping increased in a dose-dependent manner and enabled restoration of the DMD gene product, dystrophin. Further, Ca2+-imaging analysis showed a decreased number of arrhythmic cells and improved transient Ca2+ signaling after exon skipping. Thus, exon-45 skipping may be effective for cardiac involvement in DMD patients harboring the DMD-exon 46-55 deletion.


Asunto(s)
Calcio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Núcleo Celular/metabolismo , Distrofina/genética , Exones , Femenino , Eliminación de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Japón , Adulto Joven
14.
Bioorg Med Chem Lett ; 29(2): 160-163, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30551900

RESUMEN

The effect of 2'-O-(N-methylcarbamoyl)ethyl (MCE) modification on splice-switching oligonucleotides (SSO) was systematically evaluated. The incorporation of five MCE nucleotides at the 5'-termini of SSOs effectively improved the splice switching effect. In addition, the incorporation of 2'-O-(N-methylcarbamoylethyl)-5-methyl-2-thiouridine (s2TMCE), a duplex-stabilizing nucleotide with an MCE modification, into SSOs further improved splice switching. These SSOs may be useful for the treatment of genetic diseases associated with splicing errors.


Asunto(s)
Oligonucleótidos/química , Tiouridina/química , Estructura Molecular , Tiouridina/agonistas , Tiouridina/síntesis química
15.
Am J Physiol Cell Physiol ; 314(6): C721-C731, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513566

RESUMEN

Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798-4811, 2009). However, the pathological role of ROS production associated with unloading-mediated muscle atrophy still remains unknown. Here, we showed that the ROS-mediated signal transduction caused by microgravity or its simulation contributes to Cbl-b expression. In L6 myotubes, the assessment of redox status revealed that oxidized glutathione was increased under microgravity conditions, and simulated microgravity caused a burst of ROS, implicating ROS as a critical upstream mediator linking to downstream atrophic signaling. ROS generation activated the ERK1/2 early-growth response protein (Egr)1/2-Cbl-b signaling pathway, an established contributing pathway to muscle volume loss. Interestingly, antioxidant treatments such as N-acetylcysteine and TEMPOL, but not catalase, blocked the clinorotation-mediated activation of ERK1/2. The increased ROS induced transcriptional activity of Egr1 and/or Egr2 to stimulate Cbl-b expression through the ERK1/2 pathway in L6 myoblasts, since treatment with Egr1/2 siRNA and an ERK1/2 inhibitor significantly suppressed clinorotation-induced Cbl-b and Egr expression, respectively. Promoter and gel mobility shift assays revealed that Cbl-b was upregulated via an Egr consensus oxidative responsive element at -110 to -60 bp of the Cbl-b promoter. Together, this indicates that under microgravity conditions, elevated ROS may be a crucial mechanotransducer in skeletal muscle cells, regulating muscle mass through Cbl-b expression activated by the ERK-Egr signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Atrofia Muscular/enzimología , Mioblastos Esqueléticos/enzimología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ingravidez , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antioxidantes/farmacología , Células COS , Chlorocebus aethiops , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutatión/metabolismo , Mecanotransducción Celular , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-cbl/genética , Ratas , Vuelo Espacial , Factores de Tiempo , Regulación hacia Arriba , Simulación de Ingravidez
16.
Glycobiology ; 28(2): 80-89, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206923

RESUMEN

Collagen is one of the most important components of the extracellular matrix that is involved in the strength of tissues, cell adhesion and cell proliferation. Mutations in several collagen and post-translational modification enzyme genes cause Ehlers-Danlos syndrome (EDS) characterized by joint and skin hyperextensibility as well as fragility of various organs. Carbohydrate sulfotransferase 14/dermatan 4-O-sulfotransferase-1 (CHST14/D4ST1) is a critical enzyme for biosynthesis of dermatan sulfate, a side chain of various proteoglycans including biglycan that regulates collagen fibrils through their interaction. Mutations in CHST14 were found to cause a new form of EDS, named musculocontractural type EDS (mcEDS-CHST14). Large subcutaneous hematomas are one of the most serious complications accompanied by decreased quality of life and potential lethality. In this study, Chst14 gene-deleted mice were expected to be an animal model of the vascular abnormalities of mcEDS-CHST14. However, only limited numbers of adult mice were generated because of perinatal lethality in most Chst14 gene-deleted homozygote (Chst14-/-) mice. Therefore, we investigated the placentas of these fetuses. The placentas of Chst14-/- fetuses showed a reduced weight, alterations in the vascular structure, and ischemic and/or necrotic-like changes. Electron microscopy demonstrated an abnormal structure of the basement membrane of capillaries in the placental villus. These findings suggest that Chst14 is essential for placental vascular development and perinatal survival of fetuses. Furthermore, placentas of Chst14-/- fetuses could be a useful model for vascular manifestations in mcEDS-CHST14, such as the large subcutaneous hematomas.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Placenta/patología , Sulfotransferasas/genética , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Colágeno/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patología , Femenino , Muerte Fetal , Masculino , Ratones , Placenta/irrigación sanguínea , Placenta/metabolismo , Embarazo , Sulfotransferasas/metabolismo
17.
Biochem Biophys Res Commun ; 505(1): 51-59, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30236982

RESUMEN

Duchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) are due to mutations in the DMD gene. Previous reports show that in-frame deletion of exons 45-55 produces an internally shorted, but functional, dystrophin protein resulting in a very mild BMD phenotype. In order to elucidate the molecular mechanism leading to this phenotype, we generated exon 45-55 deleted dystrophin transgenic/mdx (Tg/mdx) mice. Muscular function of Tg/mdx mice was restored close to that of wild type (WT) mice but the localization of the neuronal type of nitric oxide synthase was changed from the sarcolemma to the cytosol. This led to hyper-nitrosylation of the ryanodine receptor 1 causing increased Ca2+ release from the sarcoplasmic reticulum. On the other hand, Ca2+ reuptake by the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) was restored to the level of WT mice, suggesting that the Ca2+ dysregulation had been compensated by SERCA activation. In line with this, expression of sarcolipin (SLN), a SERCA-inhibitory peptide, was upregulated in mdx mice, but strongly reduced in Tg/mdx mice. Furthermore, knockdown of SLN ameliorated the cytosolic Ca2+ homeostasis and the dystrophic phenotype in mdx mice. These findings suggest that SLN may be a novel target for DMD therapy.


Asunto(s)
Distrofina/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Distrofina/genética , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Ratones Transgénicos , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fenotipo , Proteolípidos/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transgenes/genética
18.
Development ; 142(1): 51-61, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25480916

RESUMEN

Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7(+)MyoD(-) cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7(+)MyoD(-) cells are not self-renewed satellite cells, but have different potentials for both proliferation and differentiation from Pax7(+)MyoD(+) myoblasts (classical daughter cells), and are specifically marked by expression of the doublecortin (Dcx) gene. Transplantation and lineage-tracing experiments demonstrated that Dcx-expressing cells originate from quiescent satellite cells and that the microenvironment induces Dcx in myoblasts. Expression of Dcx seems to be necessary for myofiber maturation because Dcx-deficient mice exhibited impaired myofiber maturation resulting from a decrease in the number of myonuclei. Furthermore, in vitro and in vivo studies suggest that one function of Dcx in myogenic cells is acceleration of cell motility. These results indicate that Dcx is a new marker for the Pax7(+)MyoD(-) subpopulation, which contributes to myofiber maturation during muscle regeneration.


Asunto(s)
Diferenciación Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Neuropéptidos/metabolismo , Regeneración/fisiología , Células Madre/citología , Animales , Cardiotoxinas/administración & dosificación , Movimiento Celular , Microambiente Celular , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Neuropéptidos/deficiencia , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Madre/metabolismo
19.
Am J Pathol ; 187(5): 1147-1161, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28315675

RESUMEN

Inflammatory events occurring in dystrophic muscles contribute to the progression of Duchenne muscular dystrophy (DMD). Low-intensity training (LIT) attenuates the phenotype of mdx mice, an animal model for DMD. Therefore, we postulated that LIT could have anti-inflammatory properties. We assessed levels of inflammatory cytokines and infiltrated immune cells in gastrocnemius muscle of mdx mice after LIT. We detected high levels of complement component C5a, chemokine ligand (CCL) 2, CD68+ monocytes/macrophages, and proinflammatory M1 macrophages in muscles of mdx mice. LIT decreased CCL2 levels, increased CD68+ cell numbers, and shifted the macrophage population to the regenerative M2 type. We investigated whether inhibition of C5a or CCL2 with L-aptamers could mimic the effects of LIT. Although no effect of CCL2 inhibition was detected, treatment with the C5a inhibitor, NOX-D21, rescued the phenotype of nonexercised mdx mice, but not of exercised ones. In both cases, the level of CD68+ cells increased and macrophage populations leaned toward the inflammatory M1 type. In muscles of nonexercised treated mice, the level of IL-1 receptor antagonist increased, damage decreased, and fibers were switched toward the glycolytic fast type; in muscles of exercised mice, fibers were switched to the oxidative slow type. These results reveal the effects of LIT on the inflammatory status of mdx mice and suggest that NOX-D21 could be an anti-inflammatory drug for DMD.


Asunto(s)
Complemento C5a/antagonistas & inhibidores , Distrofia Muscular Animal/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Aptámeros de Nucleótidos/farmacología , Quimiocina CCL2/antagonistas & inhibidores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Miembro Anterior , Macrófagos/fisiología , Masculino , Ratones Endogámicos mdx , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Distrofia Muscular Animal/fisiopatología , Miositis/fisiopatología , Miositis/prevención & control , Fenotipo , Natación/fisiología
20.
Brain ; 140(4): 887-897, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334866

RESUMEN

A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Transporte Biológico , Proteína C9orf72 , Células COS , Línea Celular , Chlorocebus aethiops , Expansión de las Repeticiones de ADN , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Intrones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Oligonucleótidos Antisentido/farmacología , Linaje , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/patología , Proteínas/genética , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA