Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(3-4): e2200431, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37548120

RESUMEN

Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Flujo de Trabajo , Péptidos/análisis , Proteínas de Unión al ADN
2.
Anal Chem ; 94(37): 12815-12821, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36069571

RESUMEN

The combination of liquid chromatography (LC) and gas-phase separation by field-asymmetric ion mobility spectrometry (FAIMS) is a powerful proteoform separation system for top-down proteomics. Here, we present an in-depth top-down proteomics workflow, GeLC-FAIMS-MS, in which a molecular-weight-based proteome fractionation approach using SDS-polyacrylamide gel electrophoresis is performed prior to LC-FAIMS-MS. Since individual bands and their corresponding mass ranges require different compensating voltages (CVs), the MS parameters for each gel band and CV were optimized to increase the number and reliability of proteoform identifications further. We developed an easy-to-implement and inexpensive procedure combining the earlier established Passively Eluting Proteins from Polyacrylamide gels as Intact species (PEPPI) protocol with an optimized Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP) method for the removal of stains and SDS. The protocol was compared with a methanol-chloroform-water (MCW)-based protein precipitation protocol. The results show that the PEPPI-AnExSP procedure is better suited for the identification of low-molecular-weight proteoforms, whereas the MCW-based protocol showed advantages for higher-molecular-weight proteoforms. Moreover, complementary results were observed with the two methods in terms of hydrophobicity and isoelectric points of the identified proteoforms. In total, 8500 proteoforms could be identified in a human proteome standard, showing the effectiveness of the gel-based sample fractionation approaches in combination with LC-FAIMS-MS.


Asunto(s)
Proteoma , Proteómica , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Humanos , Espectrometría de Movilidad Iónica , Proteoma/análisis , Proteómica/métodos , Reproducibilidad de los Resultados
3.
BMC Biol ; 19(1): 195, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496840

RESUMEN

BACKGROUND: QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. However, changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process. RESULTS: We report a new approach to the assembly and construction of QconCATs, based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short construct also allows a second cycle of loop assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro. CONCLUSIONS: We refer to this approach as the ALACAT strategy as it permits à la carte design of quantification standards. ALACAT methodology is a major gain in flexibility of QconCAT implementation as it supports rapid editing and improvement of QconCATs and permits, for example, substitution of one peptide by another.


Asunto(s)
Proteínas , Proteómica , Biblioteca de Genes , Técnicas Genéticas , Péptidos , Proteínas/análisis
4.
J Proteome Res ; 20(3): 1535-1543, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33356312

RESUMEN

The GeLC-MS workflow, which combines low-cost, easy-to-use sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) with liquid chromatography-mass spectrometry (LC-MS), is very popular in current bottom-up proteomics. However, GeLC-MS requires that PAGE-separated proteins undergo overnight enzymatic digestion in a gel, resulting in more than 20 h of sample preparation for LC-MS. In this study, we overcame the limitations of GeLC-MS by developing a rapid digestion workflow for PAGE separation of proteins using N,N'-bis(acryloyl)cystamine (BAC) cross-linked gels that can be solubilized by reductive treatment. Making use of an established workflow called BAC-DROP (BAC-gel dissolution to digest PAGE-resolved objective proteins), crude proteome samples were fractionated based on molecular weight by BAC cross-linked PAGE. After fractionation, the gel fragments were reductively dissolved in under 5 min, and in-solution trypsin digestion of the protein released from the gel was completed in less than 1 h at 70 °C, equivalent to a 90-95% reduction in time compared to conventional in-gel trypsin digestion. The introduction of the BAC-DROP workflow to the MS assays for inflammatory biomarker CRP and viral marker HBsAg allowed for serum sample preparation to be completed in as little as 5 h, demonstrating successful marker quantification from a 0.5 µL sample of human serum.


Asunto(s)
Proteoma , Proteómica , Digestión , Electroforesis en Gel de Poliacrilamida , Humanos , Flujo de Trabajo
5.
J Proteome Res ; 19(9): 3779-3791, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32538093

RESUMEN

Prefractionation of complex mixtures of proteins derived from biological samples is indispensable for proteome analysis via top-down mass spectrometry (MS). Polyacrylamide gel electrophoresis (PAGE), which enables high-resolution protein separation based on molecular size, is a widely used technique in biochemical experiments and has the potential to be useful in sample fractionation for top-down MS analysis. However, the lack of a means to efficiently recover the separated proteins in-gel has always been a barrier to its use in sample prefractionation. In this study, we present a novel experimental workflow, called Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS ("PEPPI-MS"), which allows top-down MS of PAGE-separated proteins. The optimization of Coomassie brilliant blue staining followed by the passive extraction step in the PEPPI-MS workflow enabled the efficient recovery of proteins, separated on commercial precast gels, from a wide range of molecular weight regions in under 10 min. Two-dimensional separation combining offline PEPPI-MS with online reversed-phase liquid chromatographic separation resulted in identification of over 1000 proteoforms recovered from the target region of the gel (≤50 kDa). Given the widespread availability and relatively low cost of traditional sodium dodecyl sulfate (SDS)-PAGE equipment, the PEPPI-MS workflow will be a powerful prefractionation strategy for top-down proteomics.


Asunto(s)
Resinas Acrílicas , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas
6.
Mol Cell Proteomics ; 16(12): 2169-2183, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29055021

RESUMEN

A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system.


Asunto(s)
Sistema Libre de Células/metabolismo , Péptidos/metabolismo , Proteómica/normas , Secuencia de Bases , Biblioteca de Genes , Humanos , Marcaje Isotópico , Péptidos/genética , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem
7.
PLoS Genet ; 11(2): e1005009, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25719383

RESUMEN

To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context.


Asunto(s)
Oryzias/genética , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Vasotocina/genética , Agresión/fisiología , Animales , Copulación/fisiología , Femenino , Masculino , Matrimonio , Motivación/fisiología , Oryzias/fisiología , Vasotocina/metabolismo
8.
Anal Chem ; 89(16): 8244-8250, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28723075

RESUMEN

Biologists' preeminent toolbox for separating, analyzing, and visualizing proteins is SDS-PAGE, yet recovering the proteins embedded in these polyacrylamide media as intact species is a long-standing challenge for mass spectrometry. In conventional workflows, protein mixtures from crude biological samples are electrophoretically separated at high-resolution within N,N'-methylene-bis-acrylamide cross-linked polyacrylamide gels to reduce sample complexity and facilitate sensitive characterization. However, low protein recoveries, especially for high molecular weight proteins, often hinder characterization by mass spectrometry. We describe a workflow for top-down/bottom-up mass spectrometric analyses of proteins in polyacrylamide slab gels using dissolvable, bis-acryloylcystamine-cross-linked polyacrylamide, enabling high-resolution protein separations while recovering intact proteins over a broad size range efficiently. The inferior electrophoretic resolution long associated with reducible gels has been overcome, as demonstrated by SDS-PAGE of crude tissue extracts. This workflow elutes intact proteins efficiently, supporting MS and MS/MS from proteins resolved on biologists' preferred separation platform.


Asunto(s)
Resinas Acrílicas/química , Geles/química , Proteínas de Insectos/análisis , Animales , Drosophila melanogaster , Electroforesis en Gel de Poliacrilamida/instrumentación , Electroforesis en Gel de Poliacrilamida/métodos , Espectrometría de Masas/métodos , Proteómica/métodos
9.
J Biol Chem ; 290(27): 16665-77, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25969537

RESUMEN

Protein phosphorylation on Tyr residues is a key post-translational modification in mammals. In plants, recent studies have identified Tyr-specific protein phosphatase and Tyr-phosphorylated proteins in Arabidopsis by phosphoproteomic screenings, implying that plants have a Tyr phosphorylation signal pathway. However, little is known about the protein kinases (PKs) involved in Tyr phosphorylation in plants. Here, we demonstrate that Arabidopsis calcium-dependent protein kinase (CDPK/CPK)-related PKs (CRKs) have high Tyr-autophosphorylation activity and that they can phosphorylate Tyr residue(s) on substrate proteins in Arabidopsis. To identify PKs for Tyr phosphorylation, we examined the autophosphorylation activity of 759 PKs using an Arabidopsis protein array based on a wheat cell-free system. In total, we identified 38 PKs with Tyr-autophosphorylation activity. The CRK family was a major protein family identified. A cell-free substrate screening revealed that these CRKs phosphorylate ß-tubulin (TBB) 2, TBB7, and certain transcription factors (TFs) such as ethylene response factor 13 (ERF13). All five CRKs tested showed Tyr-auto/trans-phosphorylation activity and especially two CRKs, CRK2 and CRK3, showed a high ERF13 Tyr-phosphorylation activity. A cell-based transient expression assay revealed that Tyr(16/)Tyr(207) sites in ERF13 were phosphorylated by CRK3 and that Tyr phosphorylation of endogenous TBBs occurs in CRK2 overexpressing cells. Furthermore, crk2 and crk3 mutants showed a decrease in the Tyr phosphorylation level of TBBs. These results suggest that CRKs have Tyr kinase activity, and these might be one of the major PKs responsible for protein Tyr phosphorylation in Arabidopsis plants.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Familia de Multigenes , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosforilación , Proteínas Quinasas/genética , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tirosina/química
10.
Blood ; 119(11): 2688-98, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22279058

RESUMEN

Angiogenic homeostasis is maintained by a balance between vascular endothelial growth factor (VEGF) and Notch signaling in endothelial cells (ECs). We screened for molecules that might mediate the coupling of VEGF signal transduction with down-regulation of Notch signaling, and identified B-cell chronic lymphocytic leukemia/lymphoma6-associated zinc finger protein (BAZF). BAZF was induced by VEGF-A in ECs to bind to the Notch signaling factor C-promoter binding factor 1 (CBF1), and to promote the degradation of CBF1 through polyubiquitination in a CBF1-cullin3 (CUL3) E3 ligase complex. BAZF disruption in vivo decreased endothelial tip cell number and filopodia protrusion, and markedly abrogated vascular plexus formation in the mouse retina, overlapping the retinal phenotype seen in response to Notch activation. Further, impaired angiogenesis and capillary remodeling were observed in skin-wounded BAZF(-/-) mice. We therefore propose that BAZF supports angiogenic sprouting via BAZF-CUL3-based polyubiquitination-dependent degradation of CBF1 to down-regulate Notch signaling.


Asunto(s)
Proteínas Cullin/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Comunicación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Cullin/antagonistas & inhibidores , Proteínas Cullin/genética , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/antagonistas & inhibidores , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Inmunoprecipitación , Luciferasas/metabolismo , Ratones , Ratones Noqueados , Morfogénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Poliubiquitina/metabolismo , Seudópodos/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Retina/citología , Retina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Piel/lesiones , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas
11.
Angiogenesis ; 16(3): 675-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23515950

RESUMEN

Vascular endothelial growth factor (VEGF) is a major angiogenic factor that activates pro-angiogenic molecules to generate new vessels. Recently, we identified a VEGF-A-induced pro-angiogenic gene, BCL-6 associated zinc finger protein (BAZF), in endothelial cells. BAZF interacts with CBF1, a transcriptional regulator of Notch signaling, and downregulates Notch signaling by inducing the degradation of CBF1. A signal inhibition assay with a combination of chemical inhibitors and siRNA revealed that the protein kinase D (PRKD) family, mainly PRKD2, mediated BAZF gene expression by VEGF-A stimulation. A luciferase reporter assay showed that the promoter activity of the BAZF gene was unchanged by VEGF-A stimulation. However, we found that the stability of BAZF mRNA increased in a VEGF-A/PRKD2-dependent manner. In further studies to investigate the underlying mechanism, we successfully identified heat shock protein 90 beta (HSP90ß) as a molecule that interacts with and stabilizes BAZF mRNA following VEGF-A/PRKD2 activation. These data suggest that HSP90ß may positively regulate angiogenesis, not only as a protein chaperone, but also as an mRNA stabilizer for pro-angiogenic genes, such as BAZF, in a PRKD2 activity-dependent manner.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Quinasas/metabolismo , Estabilidad del ARN/fisiología , Proteínas Represoras/fisiología , Western Blotting , Electroforesis en Gel Bidimensional , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Luciferasas , Proteína Quinasa C/metabolismo , Proteína Quinasa D2 , Interferencia de ARN , Estabilidad del ARN/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología
12.
Methods Enzymol ; 682: 187-210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948702

RESUMEN

Mass spectrometry is an analytical technique that can detect protein molecules with high sensitivity. Its use is not limited to the mere identification of protein components in biological samples, but is recently being utilized for large-scale analysis of protein structures in vivo as well. Top-down mass spectrometry with an ultra-high resolution mass spectrometer, for example, ionizes proteins in their intact state and allows rapid analysis of their chemical structure, which is used to determine proteoform profiles. Furthermore, cross-linking mass spectrometry, which analyzes enzyme-digested fragments of chemically cross-linked protein complexes, allows acquisition of conformational information on protein complexes in multimolecular crowding environments. In the analysis workflow of structural mass spectrometry, prior fractionation of crude biological samples is an effective way to obtain more detailed structural information. Polyacrylamide gel electrophoresis (PAGE), known as a simple and reproducible means of protein separation in biochemistry, is one example of an excellent high-resolution sample prefractionation tool for structural mass spectrometry. This chapter describes elemental technologies for PAGE-based sample prefractionation including Passively Eluting Proteins from Polyacrylamide gels as Intact species for Mass Spectrometry (PEPPI-MS), a highly efficient method for intact in-gel protein recovery, and Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP), a rapid enzymatic digestion method using a solid-phase extraction microspin column for gel-recovered proteins, in addition to presenting detailed experimental protocols and examples of their use for structural mass spectrometry.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Proteínas/química , Electroforesis en Gel de Poliacrilamida , Fraccionamiento Químico
13.
Chem Commun (Camb) ; 58(6): 775-778, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34897310

RESUMEN

We introduce a simple single-column protein digestion method for low-microgram-level samples containing sodium dodecyl sulfate and Coomassie dye that can be completed within a few hours.

14.
mSystems ; 7(2): e0002622, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35384696

RESUMEN

Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the biosustainability of future industries. Acetogens are the most efficient known microbes for fixing carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular concentrations for >1,000 proteins in the model acetogen Clostridium autoethanogenum grown autotrophically on three gas mixtures (CO, CO+H2, or CO+CO2+H2). We detect the prioritization of proteome allocation for C1 fixation and the significant expression of proteins involved in the production of acetate and ethanol as well as proteins with unclear functions. The data also revealed which isoenzymes are likely relevant in vivo for CO oxidation, H2 metabolism, and ethanol production. The integration of proteomic and metabolic flux data demonstrated that enzymes catalyze high fluxes with high concentrations and high in vivo catalytic rates. We show that flux adjustments were dominantly accompanied by changing enzyme catalytic rates rather than concentrations. IMPORTANCE Acetogen bacteria are important for maintaining biosustainability as they can recycle gaseous C1 waste feedstocks (e.g., industrial waste gases and syngas from gasified biomass or municipal solid waste) into fuels and chemicals. Notably, the acetogen Clostridium autoethanogenum is being used as a cell factory in industrial-scale gas fermentation. Here, we perform reliable absolute proteome quantification for the first time in an acetogen. This is important as our work advances both rational metabolic engineering of acetogen cell factories and accurate in silico reconstruction of their phenotypes. Furthermore, this absolute proteomics data set serves as a reference toward a better systems-level understanding of the ancient metabolism of acetogens.


Asunto(s)
Dióxido de Carbono , Proteoma , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Proteómica , Gases/metabolismo , Etanol/metabolismo , Carbono
15.
J Neurosci ; 30(4): 1238-49, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20107052

RESUMEN

Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP) (CG10233) in Drosophila photoreceptors and establish its involvement in dark-noise suppression. RTP possesses membrane occupation and recognition nexus (MORN) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light-gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking neither inactivation nor afterpotential C (NINAC) myosin III, a motor protein/kinase, also display a similar dark-noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is attributable to lack of RTP and, furthermore, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors.


Asunto(s)
Adaptación a la Oscuridad/efectos de la radiación , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Ojo/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Visión Ocular/fisiología , Adaptación Ocular/fisiología , Adaptación Ocular/efectos de la radiación , Secuencias de Aminoácidos/fisiología , Animales , Animales Modificados Genéticamente , Adaptación a la Oscuridad/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Ojo/ultraestructura , Proteínas del Ojo/química , Proteínas del Ojo/genética , Luz , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de la radiación , Microvellosidades/metabolismo , Microvellosidades/efectos de la radiación , Microvellosidades/ultraestructura , Mutación/genética , Fosfoproteínas/genética , Estimulación Luminosa , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efectos de la radiación , Células Fotorreceptoras/ultraestructura , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Células Fotorreceptoras de Invertebrados/ultraestructura , Estructura Terciaria de Proteína/fisiología , Estructura Terciaria de Proteína/efectos de la radiación , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación
16.
FEBS Open Bio ; 11(6): 1552-1564, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960726

RESUMEN

DNA is packaged with histones to form chromatin that impinges on all nuclear processes, including transcription, replication and repair, in the eukaryotic nucleus. A complete understanding of these molecular processes requires analysis of chromatin context in vitro. Here, Drosophila four core histones were produced in a native and unmodified form using wheat germ cell-free protein synthesis. In the assembly reaction, four unpurified core histones and three chromatin assembly factors (dNAP-1, dAcf1 and dISWI) were incubated with template DNA. We then assessed stoichiometry with the histones, nucleosome arrays, supercoiling and the ability of the chromatin to serve as a substrate for histone-modifying enzymes. Overall, our method provides a new avenue to produce chromatin that can be useful in a wide range of chromatin research.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Cromatina/química , ADN/química , Proteínas de Drosophila/química , Drosophila melanogaster
17.
Arthritis Res Ther ; 23(1): 91, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743769

RESUMEN

BACKGROUND: We previously identified tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker of disease activity that distinguished mildly or highly active antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) from remission 6 months after the initiation of remission-induction therapy. In the present study, we investigated whether TIMP-1 is clinically useful as a predictor of relapse and sustained remission in AAV patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) during maintenance therapy. METHODS: The relationship between serum TIMP-1 levels and clinical outcomes in AAV patients receiving maintenance therapy was assessed using the follow-up data of a Japanese large-cohort study (the RemIT-JAV-RPGN study) and data collected from AAV patients on maintenance therapy in our hospital (the MAAV-EU study). RESULTS: In the RemIT-JAV RPGN study, serum levels of TIMP-1 were significantly higher in mildly active AAV patients with MPA and GPA 6 months after the initiation of remission-induction therapy than in patients in remission. Regarding maintenance therapy, elevated levels of TIMP-1 in patients in remission were associated with relapse and/or difficulty reducing the glucocorticoid dosage after 6 to 12 months. In the MAAV-EU study, serum levels of TIMP-1 were elevated in relapsed patients 6 months before relapse, earlier than the increase in serum levels of CRP. Analyses of both studies revealed that approximately 30% of patients in remission with a serum TIMP-1 level ≥ 150 ng/mL relapsed after 6 to 12 months, while the majority of patients with a TIMP-1 level < 150 ng/mL sustained remission for at least 12 months. CONCLUSION: We herein demonstrated that TIMP-1 is more useful as a predictive biomarker of sustained remission than as a predictor of relapse in maintenance therapy for AAV. TIMP-1 levels < 150 ng/mL are important for the long-term maintenance of remission and may be an indicator for the tapering or cessation of treatment.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Granulomatosis con Poliangitis , Poliangitis Microscópica , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Anticuerpos Anticitoplasma de Neutrófilos , Estudios de Cohortes , Humanos , Inducción de Remisión , Inhibidor Tisular de Metaloproteinasa-1
19.
Commun Biol ; 3(1): 394, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709928

RESUMEN

Although the important roles of glycolysis in T cells have been demonstrated, the regulatory mechanism of glycolysis in activated T cells has not been fully elucidated. Furthermore, the influences of glycolytic failure on the T cell-dependent immune response in vivo remain unclear. We therefore assessed the role of glycolysis in the T cell-dependent immune response using T cell-specific Pgam1-deficient mice. Both CD8 and CD4 T cell-dependent immune responses were attenuated by Pgam1 deficiency. The helper T cell-dependent inflammation was ameliorated in Pgam1-deficient mice. Glycolysis augments the activation of mTOR complex 1 (mTORC1) and the T-cell receptor (TCR) signals. Glutamine acts as a metabolic hub in activated T cells, since the TCR-dependent increase in intracellular glutamine is required to augment glycolysis, increase mTORC1 activity and augment TCR signals. These findings suggest that mTORC1, glycolysis and glutamine affect each other and cooperate to induce T cell proliferation and differentiation.


Asunto(s)
Glucólisis/genética , Inmunidad/genética , Fosfoglicerato Mutasa/genética , Linfocitos T/inmunología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Glucólisis/inmunología , Humanos , Inmunidad/inmunología , Activación de Linfocitos/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones
20.
Proteomics ; 9(9): 2484-93, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19343724

RESUMEN

The fruit fly Drosophila melanogaster is an excellent model organism for studying insect reproductive biology. Although the gene expression profiles of both male and female reproductive organs have been studied in detail, their proteomic profiles and functional characteristics largely remained to be clarified. In this study, we conducted proteome mapping of the male internal reproductive organs using 2-DE. We identified a total of 440 protein components from gels of the male reproductive organs (testis, seminal vesicle, accessory gland, ejaculatory duct, and ejaculatory bulb). A number of proteins associated with odorant/pheromone-binding, lipid metabolism, proteolysis, and antioxidation were expressed tissue specifically in the male reproductive system. Based on our proteomic data set, we constructed reference proteome maps of the reproductive organs, which will provide valuable information toward a comprehensive understanding of Drosophila reproduction.


Asunto(s)
Drosophila melanogaster/fisiología , Proteínas de Insectos/análisis , Mapeo Peptídico , Proteínas de Plasma Seminal/análisis , Animales , Electroforesis en Gel Bidimensional , Genitales Masculinos/anatomía & histología , Genitales Masculinos/química , Genitales Masculinos/metabolismo , Proteínas de Insectos/metabolismo , Masculino , Modelos Biológicos , Proteómica , Proteínas de Plasma Seminal/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA