Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 541(7635): 92-95, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002408

RESUMEN

Phosphorus is an important nutrient for crop productivity. More than 60% of the total phosphorus in cereal crops is finally allocated into the grains and is therefore removed at harvest. This removal accounts for 85% of the phosphorus fertilizers applied to the field each year. However, because humans and non-ruminants such as poultry, swine and fish cannot digest phytate, the major form of phosphorus in the grains, the excreted phosphorus causes eutrophication of waterways. A reduction in phosphorus accumulation in the grain would contribute to sustainable and environmentally friendly agriculture. Here we describe a rice transporter, SULTR-like phosphorus distribution transporter (SPDT), that controls the allocation of phosphorus to the grain. SPDT is expressed in the xylem region of both enlarged- and diffuse-vascular bundles of the nodes, and encodes a plasma-membrane-localized transporter for phosphorus. Knockout of this gene in rice (Oryza sativa) altered the distribution of phosphorus, with decreased phosphorus in the grains but increased levels in the leaves. Total phosphorus and phytate in the brown de-husked rice were 20-30% lower in the knockout lines, whereas yield, seed germination and seedling vigour were not affected. These results indicate that SPDT functions in the rice node as a switch to allocate phosphorus preferentially to the grains. This finding provides a potential strategy to reduce the removal of phosphorus from the field and lower the risk of eutrophication of waterways.


Asunto(s)
Agricultura/métodos , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Oryza/anatomía & histología , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Animales , Transporte Biológico , Grano Comestible/metabolismo , Eutrofización , Fertilizantes , Técnicas de Inactivación de Genes , Germinación , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Especificidad de Órganos , Oryza/genética , Oryza/crecimiento & desarrollo , Ácido Fítico/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantones/crecimiento & desarrollo , Xilema/metabolismo
3.
Plant Cell Physiol ; 58(9): 1573-1582, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633293

RESUMEN

Manganese (Mn) cation diffusion facilitators (Mn-CDFs) play important roles in the Mn homeostasis of plants. In rice, the tonoplast-localized Mn-CDF metal tolerance protein 8.1 (MTP8.1) is involved in Mn detoxification in the shoots. This study functionally characterized the Mn-CDF MTP8.2 and determined its contribution to Mn tolerance. MTP8.2 was found to share 68% identity with MTP8.1 and was expressed in both the shoots and roots, but its transcription level was lower than that of MTP8.1. Transient expression of the MTP8.2:green fluorescent protein (GFP) fusion protein and immunoblotting studies indicated that MTP8.2 was also localized to the tonoplast. MTP8.2 expression in yeast conferred tolerance to Mn but not to Fe, Zn, Co, Ni or Cd. MTP8.2 knockdown caused further growth reduction of shoots and roots in the mtp8.1 mutant, which already exhibits stunted growth under conditions of excess Mn. In the presence of high Mn, the MTP8.2 knockdown lines of the mtp8.1 mutant showed lower root Mn concentrations, as well as lower root:total Mn ratios, than those of wild-type rice and the mtp8.1 mutant. These findings indicate that MTP8.2 mediates Mn tolerance along with MTP8.1 through the sequestration of Mn into the shoot and root vacuoles.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Vacuolas/metabolismo , Técnicas de Silenciamiento del Gen , Inactivación Metabólica/efectos de los fármacos , Manganeso/toxicidad , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos
4.
J Exp Bot ; 64(14): 4375-87, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23963678

RESUMEN

Manganese (Mn) is an essential micronutrient for plants, but is toxic when present in excess. The rice plant (Oryza sativa L.) accumulates high concentrations of Mn in the aerial parts; however, the molecular basis for Mn tolerance is poorly understood. In the present study, genes encoding Mn tolerance were screened for by expressing cDNAs of genes from rice shoots in Saccharomyces cerevisiae. A gene encoding a cation diffusion facilitator (CDF) family member, OsMTP8.1, was isolated, and its expression was found to enhance Mn accumulation and tolerance in S. cerevisiae. In plants, OsMTP8.1 and its transcript were mainly detected in shoots. High or low supply of Mn moderately induced an increase or decrease in the accumulation of OsMTP8.1, respectively. OsMTP8.1 was detected in all cells of leaf blades through immunohistochemistry. OsMTP8.1 fused to green fluorescent protein was localized to the tonoplast. Disruption of OsMTP8.1 resulted in decreased chlorophyll levels, growth inhibition in the presence of high concentrations of Mn, and decreased accumulation of Mn in shoots and roots. However, there was no difference in the accumulation of other metals, including Zn, Cu, Fe, Mg, Ca, and K. These results suggest that OsMTP8.1 is an Mn-specific transporter that sequesters Mn into vacuoles in rice and is required for Mn tolerance in shoots.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Manganeso/toxicidad , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cationes , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Difusión , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Análisis de Secuencia de Proteína , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
5.
Nat Plants ; 1: 15170, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27251715

RESUMEN

Manganese is an essential metal for plant growth. A number of transporters involved in the uptake of manganese from soils, and its translocation to the shoot, have been identified in Arabidopsis and rice. However, the transporter responsible for the radial transport of manganese out of root exodermis and endodermis cells and into the root stele remains unknown. Here, we show that metal tolerance protein 9 (MTP9), a member of the cation diffusion facilitator family, is a critical player in this process in rice (Oryza sativa). We find that MTP9 is mainly expressed in roots, and that the resulting protein is localized to the plasma membrane of exo- and endodermis cells, at the proximal side of these cell layers (opposite the manganese uptake transporter Nramp5, which is found at the distal side). We demonstrate that MTP9 has manganese transport activity by expression in proteoliposomes and yeast, and show that knockout of MTP9 in rice reduces manganese uptake and its translocation to shoots. We conclude that at least in rice MTP9 is required for manganese translocation to the root stele, and thereby manganese uptake.

6.
Int J Plant Genomics ; 2012: 649081, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22500165

RESUMEN

MANY POSTZYGOTIC REPRODUCTIVE BARRIER FORMS HAVE BEEN REPORTED IN PLANTS: hybrid weakness, hybrid necrosis, and hybrid chlorosis. In this study, linkage analysis of the genes causing hybrid chlorosis in F(2) generation in rice, HCA1 and HCA2, was performed. HCA1 and HCA2 are located respectively on the distal regions of the short arms of chromosomes 12 and 11. These regions are known to be highly conserved as a duplicated chromosomal segment. The molecular mechanism causing F(2) chlorosis deduced from the location of the two genes was discussed. The possibility of the introgression of the chromosomal segments encompassing HCA1 and/or HCA2 was also discussed from the viewpoint of Indica-Japonica differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA