Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 139(26): 8796-8799, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28618780

RESUMEN

A unique charge/discharge mechanism of amorphous TiS4 is reported. Amorphous transition metal polysulfide electrodes exhibit anomalous charge/discharge performance and should have a unique charge/discharge mechanism: neither the typical intercalation/deintercalation mechanism nor the conversion-type one, but a mixture of the two. Analyzing the mechanism of such electrodes has been a challenge because fewer tools are available to examine the "amorphous" structure. It is revealed that the electrode undergoes two distinct structural changes: (i) the deformation and formation of S-S disulfide bonds and (ii) changes in the coordination number of titanium. These structural changes proceed continuously and concertedly for Li insertion/extraction. The results of this study provide a novel and unique model of amorphous electrode materials with significantly larger capacities.

2.
RSC Adv ; 14(10): 7229-7233, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38419678

RESUMEN

We successfully prepared an Fe- and Li-containing polysulfide positive electrode material (Li8FeS5-Li2FeS2 composite) that shows a high specific capacity (>500 mA h g-1) with improved rate capability in all-solid-state cells. High-resolution TEM analysis indicated the coexistence of small crystallites of high-conductivity Li2FeS2 and FeS, as well as low-crystallinity Li2S, in the composite, and this microstructure is responsible for the improved battery performance.

3.
Small Methods ; 7(10): e2300310, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37452269

RESUMEN

For devices encountering long-term stability challenges, a precise evaluation of degradation is of paramount importance. However, methods for comprehensively elucidating the degradation mechanisms in devices, particularly those undergoing dynamic chemical and mechanical changes during operation, such as batteries, are limited. Here, a method is presented using operando computed tomography combined with X-ray absorption near-edge structure spectroscopy (CT-XANES) that can directly track the evolution of the 3D distribution of the local capacity loss in battery electrodes during (dis)charge cycles, thereby enabling a five-dimensional (the 3D spatial coordinates, time, and chemical state) analysis of the degradation. This paper demonstrates that the method can quantify the spatiotemporal dynamics of the local capacity degradation within an electrode during cycling, which has been truncated by existing bulk techniques, and correlate it with the overall electrode performance degradation. Furthermore, the method demonstrates its capability to uncover the correlation among observed local capacity degradation within electrodes, reaction history during past (dis)charge cycles, and electrode microstructure. The method thus provides critical insights into the identification of degradation factors that are not available through existing methods, and therefore, will contribute to the development of batteries with long-term stability.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35829727

RESUMEN

Amorphous transition-metal polysulfides are promising positive electrode materials for next-generation rechargeable lithium-ion batteries because of their high theoretical capacities. In this study, sulfur anion redox during lithiation of amorphous TiS4 (a-TiS4) was investigated by using experimental and theoretical methods. It was found that a-TiS4 has a variety of sulfur valence states such as S2-, S-, and Sδ-. The S2- species became the main component in the Li4TiS4 composition, indicating that sulfur is a redox-active element up to this composition. The simulated a-TiS4 structure changed gradually by lithium accommodation to form a-Li4TiS4: S-S bonds in the disulfide units and polysulfide chains were broken. Bader charge analysis suggested that the average S valency decreased drastically. Moreover, deep lithiation of a-TiS4 provided a conversion reaction to metallic Ti and Li2S, with a high practical capacity of ∼1000 mAh g-1 when a lower cutoff voltage was applied.

5.
RSC Adv ; 11(27): 16530-16536, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35479124

RESUMEN

The ionic conductivity of Li6Y(BO3)3 (LYBO) was enhanced by the substitution of tetravalent ions (Zr4+ and Ce4+) for Y3+ sites through the formation of vacancies at the Li sites, an increase in compact densification, and an increase in the Li+-ion conduction pathways in the LYBO phase. As a result, the ionic conductivity of Li5.875Y0.875Zr0.1Ce0.025(BO3)3 (ZC-LYBO) reached 1.7 × 10-5 S cm-1 at 27 °C, which was about 5 orders of magnitude higher than that of undoped Li6Y(BO3)3. ZC-LYBO possessed a large electrochemical window and was thermally stable after cosintering with a LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrode. These characteristics facilitated good reversible capacities in all-solid-state batteries for both NMC positive electrodes and graphite negative electrodes via a simple cosintering process.

6.
Sci Rep ; 9(1): 19947, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882639

RESUMEN

Divalent and trivalent states of Fe ions are known to be stable in inorganic compounds. We focus a novel LixFeS5 cathode, in which the Li content (x) changes from 2 to 10 by an electrochemical technique. As x increases from 2, a Pauli paramagnetic conductive Li2FeS5 phase changes into a superparamagnetic insulating Li10FeS5 phase. Density functional theory calculations suggest that Fe+ ions in a high-x phase are responsible for ferromagnetic spin polarization. Reaching the monovalent Fe ion is significant for understanding microscopic chemistry behind operation as Li-ion batteries and the original physical properties resulting from the unique local structure.

7.
RSC Adv ; 9(41): 23979-23985, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35530591

RESUMEN

Vanadium sulfide (VS4) is one of the promising positive electrode materials for next-generation rechargeable lithium-ion batteries because of its high theoretical capacity (1196 mA h g-1). Crystalline VS4 has a unique structure, in which the Peierls-distorted one-dimensional chains of V-V bonds along the c axis are loosely connected to each other through van der Waals interactions. In this study, an amorphous VS4 is prepared by mechanical milling of the crystalline material, and its lithiation/delithiation behavior is investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy. The amorphous VS4 shows a chain structure similar to that of crystalline VS4. The amorphous host structure is found to change drastically during the lithiation process to form Li3VS4: the V ions become tetrahedrally coordinated by S ions, in which the valence states of V and S ions simultaneously change from V4+ to V5+ and S- to S2-, respectively. When the Li insertion proceeds further, the valence state of V ions is reduced. After the 1st cycle, the amorphous VS4 recovers to the chain-like structure although it is highly disordered. No conversion to elemental V is observed, and a high capacity of 700 mA h g-1 is reversibly delivered between 1.5 and 2.6 V.

8.
Sci Rep ; 8(1): 15086, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305719

RESUMEN

The charge-discharge capacity of lithium secondary batteries is dependent on how many lithium ions can be reversibly extracted from (charge) and inserted into (discharge) the electrode active materials. In contrast, large structural changes during charging/discharging are unavoidable for electrode materials with large capacities, and thus there is great demand for developing materials with reversible structures. Herein, we demonstrate a reversible rocksalt to amorphous phase transition involving anion redox in a Li2TiS3 electrode active material with NaCl-type structure. We revealed that the lithium extraction during charging involves a change in site of the sulfur atom and the formation of S-S disulfide bonds, leading to a decrease in the crystallinity. Our results show great promise for the development of long-life lithium insertion/extraction materials, because the structural change clarified here is somewhat similar to that of optical phase-change materials used in DVD-RW discs, which exhibit excellent reversibility of the transition between crystalline and amorphous phase.

9.
Sci Rep ; 4: 4883, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24811191

RESUMEN

One way of increasing the energy density of lithium-ion batteries is to use electrode materials that exhibit high capacities owing to multielectron processes. Here, we report two novel materials, Li2TiS3 and Li3NbS4, which were mechanochemically synthesised at room temperature. When used as positive-electrode materials, Li2TiS3 and Li3NbS4 charged and discharged with high capacities of 425 mA h g(-1) and 386 mA h g(-1), respectively. These capacities correspond to those resulting from 2.5- and 3.5-electron processes. The average discharge voltage was approximately 2.2 V. It should be possible to prepare a number of high-capacity materials on the basis of the concept used to prepare Li2TiS3 and Li3NbS4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA