Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985871

RESUMEN

In vitro and in vivo stimulation and recording of neuron action potential is currently achieved with microelectrode arrays, either in planar or 3D geometries, adopting different materials and strategies. IrO2 is a conductive oxide known for its excellent biocompatibility, good adhesion on different substrates, and charge injection capabilities higher than noble metals. Atomic layer deposition (ALD) allows excellent conformal growth, which can be exploited on 3D nanoelectrode arrays. In this work, we disclose the growth of nanocrystalline rutile IrO2 at T = 150 °C adopting a new plasma-assisted ALD (PA-ALD) process. The morphological, structural, physical, chemical, and electrochemical properties of the IrO2 thin films are reported. To the best of our knowledge, the electrochemical characterization of the electrode/electrolyte interface in terms of charge injection capacity, charge storage capacity, and double-layer capacitance for IrO2 grown by PA-ALD was not reported yet. IrO2 grown on PtSi reveals a double-layer capacitance (Cdl) above 300 µF∙cm-2, and a charge injection capacity of 0.22 ± 0.01 mC∙cm-2 for an electrode of 1.0 cm2, confirming IrO2 grown by PA-ALD as an excellent material for neuroelectronic applications.

2.
ACS Appl Mater Interfaces ; 15(50): 57928-57940, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37314734

RESUMEN

In this work, block copolymer lithography and ultralow energy ion implantation are combined to obtain nanovolumes with high concentrations of phosphorus atoms periodically disposed over a macroscopic area in a p-type silicon substrate. The high dose of implanted dopants grants a local amorphization of the silicon substrate. In this condition, phosphorus is activated by solid phase epitaxial regrowth (SPER) of the implanted region with a relatively low temperature thermal treatment preventing diffusion of phosphorus atoms and preserving their spatial localization. Surface morphology of the sample (AFM, SEM), crystallinity of the silicon substrate (UV Raman), and position of the phosphorus atoms (STEM- EDX, ToF-SIMS) are monitored during the process. Electrostatic potential (KPFM) and the conductivity (C-AFM) maps of the sample surface upon dopant activation are compatible with simulated I-V characteristics, suggesting the presence of an array of not ideal but working p-n nanojunctions. The proposed approach paves the way for further investigations on the possibility to modulate the dopant distribution within a silicon substrate at the nanoscale by changing the characteristic dimension of the self-assembled BCP film.

3.
ACS Appl Nano Mater ; 5(7): 9818-9828, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35937588

RESUMEN

Nanostructured organic templates originating from self-assembled block copolymers (BCPs) can be converted into inorganic nanostructures by sequential infiltration synthesis (SIS). This capability is particularly relevant within the framework of advanced lithographic applications because of the exploitation of the BCP-based nanostructures as hard masks. In this work, Al2O3 dot and antidot arrays were synthesized by sequential infiltration of trimethylaluminum and water precursors into perpendicularly oriented cylinder-forming poly(styrene-block-methyl methacrylate) (PS-b-PMMA) BCP thin films. The mechanism governing the effective incorporation of Al2O3 into the PMMA component of the BCP thin films was investigated evaluating the evolution of the lateral and vertical dimensions of Al2O3 dot and antidot arrays as a function of the SIS cycle number. The not-reactive PS component and the PS/PMMA interface in self-assembled PS-b-PMMA thin films result in additional paths for diffusion and supplementary surfaces for sorption of precursor molecules, respectively. Thus, the mass uptake of Al2O3 into the PMMA block of self-assembled PS-b-PMMA thin films is higher than that in pure PMMA thin films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA