Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(15): 3231-3235, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-31975463

RESUMEN

It is shown in this work that high electron affinity can be combined with high solubility and practical accessibility in corannulene-based electron acceptors. The electron affinity originates from the presence of three different types of electron-withdrawing groups (imide, sulfone, and trifluoromethyl) on the aromatic scaffold. The imide substituent further hosts a long alkyl chain (C18 H37 ) to boast solubility in a wide range of organic solvents. The synthesis is modular and consists of three simple steps from a commonly available corannulene derivative with an overall isolated yield of 22-27 %.

2.
Angew Chem Int Ed Engl ; 59(48): 21620-21626, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32770615

RESUMEN

It is shown that corannulene-based strained π-surfaces can be obtained through the use of mechanochemical Suzuki and Scholl reactions. Besides being solvent-free, the mechanochemical synthesis is high-yielding, fast, and scalable. Therefore, gram-scale preparation can be carried out in a facile and sustainable manner. The synthesized nanographene structure carries positive (bowl-like) and negative (saddle-like) Gaussian curvatures and adopts an overall quasi-monkey saddle-type of geometry. In terms of properties, the non-planar surface exhibits a high electron affinity that was measured by cyclic voltammetry, with electrolysis and in situ UV/vis spectroscopy experiments indicating that the one-electron reduced state displays a long lifetime in solution. Overall, these results indicate the future potential of mechanochemistry in accessing synthetically challenging and functional curved π-systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA