Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1961): 20211255, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34666525

RESUMEN

Ecological theory postulates that the size and isolation of habitat patches impact the colonization/extinction dynamics that determine community species richness and population persistence. Given the key role of lotic habitats for life-history completion in rheophilic fish, evaluating how the distribution of swift-flowing habitats affects the abundance and dynamics of subpopulations is essential. Using extensive electrofishing data, we show that merging island biogeography with meta-population theory, where lotic habitats are considered as islands in a lentic matrix, can explain spatio-temporal variation in occurrence and density of brown trout (Salmo trutta). Subpopulations in larger and less isolated lotic habitat patches had higher average densities and smaller between-year density fluctuations. Larger lotic habitat patches also had a lower predicted risk of excessive zero-catches, indicative of lower extinction risk. Trout density further increased with distance from the edge of adjacent lentic habitats with predator (Esox lucius) presence, suggesting that edge- and matrix-related mortality contributes to the observed patterns. These results can inform the prioritization of sites for habitat restoration, dam removal and reintroduction by highlighting the role of suitable habitat size and connectivity in population abundance and stability for riverine fish populations.


Asunto(s)
Ríos , Trucha , Animales , Ecosistema , Dinámica Poblacional
2.
J Fish Biol ; 96(6): 1534-1537, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32278333

RESUMEN

The European eel Anguilla anguilla Linnaeus 1758 is critically endangered with recruitment estimated at 5-10% of historical levels. Enhancing survival of recruits is pivotal for conservation, and restoration should consider habitat choice of elvers ascending river systems. We experimentally show that newly ascended elvers choose small pebble habitat over finer and larger substrates, regardless of the presence or absence of piscivore chemical cues, indicating no predator-induced change in substrate choice. Enriching habitats with this substrate fraction should enhance eel recruitment as well as biodiversity at large.


Asunto(s)
Anguilla/fisiología , Ecosistema , Animales , Señales (Psicología) , Ríos
3.
Sci Rep ; 8(1): 22, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311634

RESUMEN

Environmental heterogeneity is a key determinant of genetic and phenotypic diversity. Stable and homogenous environments tends to result in evolution of specialism and local adaptations, while temporally unpredictable environments may maintain a diversity of specialists, promote generalist strategies, or favour diversified bet hedging strategies. We compared salinity tolerance between two anadromous subpopulations of pike (Esox Lucius) that utilize freshwater spawning sites with different salinity regimes. Eggs from each population were artificially fertilized and incubated in a salinity gradient (0, 3, 5, 7, and 9 psu) using a split-brood design. Effects on embryonic development, hatching success, survival of larvae, and fry body length were compared between populations and families. The population naturally spawning in the stable freshwater habitat showed signs of specialization for freshwater spawning. The population exposed to fluctuating selective pressure in a spawning area with occasional brackish water intrusions tolerated higher salinities and displayed considerable variation in reaction norms. Genetic differences and plasticity of salinity tolerance may enable populations to cope with changes in salinity regimes associated with future climate change. That geographically adjacent subpopulations can constitute separate units with different genetic characteristics must be considered in management and conservation efforts to avoid potentially negative effects of genetic admixture on population fitness and persistence.

4.
Sci Rep ; 8(1): 6813, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700365

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA