Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175547

RESUMEN

Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFß signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Recién Nacido , Adulto , Humanos , Células Ciliadas Auditivas/metabolismo , Cóclea/metabolismo , Transducción de Señal , Ganglio Espiral de la Cóclea , Neurogénesis
2.
FASEB J ; 35(3): e21389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33583081

RESUMEN

The glial fibrillary acidic protein (GFAP) is a type III intermediate filament (IF) protein that is highly expressed in astrocytes, neural stem cells, and in gliomas. Gliomas are a heterogeneous group of primary brain tumors that arise from glia cells or neural stem cells and rely on accurate diagnosis for prognosis and treatment strategies. GFAP is differentially expressed between glioma subtypes and, therefore, often used as a diagnostic marker. However, GFAP is highly regulated by the process of alternative splicing; many different isoforms have been identified. Differential expression of GFAP isoforms between glioma subtypes suggests that GFAP isoform-specific analyses could benefit diagnostics. In this study we report on the differential expression of a new GFAP isoform between glioma subtypes, GFAPµ. A short GFAP transcript resulting from GFAP exon 2 skipping was detected by RNA sequencing of human glioma. We show that GFAPµ mRNA is expressed in healthy brain tissue, glioma cell lines, and primary glioma cells and that it translates into a ~21 kDa GFAP protein. 21 kDa GFAP protein was detected in the IF protein fraction isolated from human spinal cord as well. We further show that induced GFAPµ expression disrupts the GFAP IF network. The characterization of this new GFAP isoform adds on to the numerous previously identified GFAP splice isoforms. It emphasizes the importance of studying the contribution of IF splice variants to specialized functions of the IF network and to glioma research.


Asunto(s)
Empalme Alternativo , Neoplasias Encefálicas/metabolismo , Proteína Ácida Fibrilar de la Glía/biosíntesis , Glioma/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Proteína Ácida Fibrilar de la Glía/química , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Biosíntesis de Proteínas , Isoformas de Proteínas , Vimentina/química
3.
Cancers (Basel) ; 16(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38201622

RESUMEN

BACKGROUND: The major histocompatibility complex type II is downregulated in glioblastoma (GB) due to the silencing of the major transcriptional regulator class II transactivator (CIITA). We investigated the pro-immunogenic potential of CIITA overexpression in mouse and human GB. METHODS: The intracerebral growth of wildtype GL261-WT cells was assessed following contralateral injection of GL261-CIITA cells or flank injections with GL261-WT or GL261-CIITA cells. Splenocytes obtained from mice implanted intracerebrally with GL261-WT, GL261-CIITA cells or phosphate buffered saline (PBS) were transferred to other mice and subsequently implanted intracerebrally with GL261-WT. Human GB cells and (syngeneic) GB-infiltrating immune cells were isolated from surgical samples and co-cultured with GB cells expressing CIITA or not, followed by RT-qPCR assessment of the expression of key immune regulators. RESULTS: Intracerebral vaccination of GL261-CIITA significantly reduced the subsequent growth of GL261-WT cells implanted contralaterally. Vaccination with GL261-WT or -CIITA subcutaneously, however, equivalently retarded the intracerebral growth of GL261 cells. Adoptive cell transfer experiments showed a similar antitumor potential of lymphocytes harvested from mice implanted intracerebrally with GL261-WT or -CIITA. Human GB-infiltrating myeloid cells and lymphocytes were not activated when cultured with CIITA-expressing GB cells. Tumor-infiltrating NK cells remained mostly inactivated when in co-culture with GB cells, regardless of CIITA. CONCLUSION: these results question the therapeutic potential of CIITA-mediated immunotherapy in glioblastoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA