Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
FEBS Open Bio ; 14(7): 1057-1071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750619

RESUMEN

There has been renewed interest in using mitochondrial uncoupler compounds such as niclosamide and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) for the treatment of obesity, hepatosteatosis and diseases where oxidative stress plays a role. However, both FCCP and niclosamide have undesirable effects that are not due to mitochondrial uncoupling, such as inhibition of mitochondrial oxygen consumption by FCCP and induction of DNA damage by niclosamide. Through structure-activity analysis, we identified FCCP analogues that do not inhibit mitochondrial oxygen consumption but still provided good, although less potent, uncoupling activity. We also characterized the functional role of the niclosamide 4'-nitro group, the phenolic hydroxy group and the anilide amino group in mediating uncoupling activity. Our structural investigations provide important information that will aid further drug development.


Asunto(s)
Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Mitocondrias , Niclosamida , Desacopladores , Niclosamida/farmacología , Niclosamida/química , Desacopladores/farmacología , Desacopladores/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/química , Humanos , Relación Estructura-Actividad , Consumo de Oxígeno/efectos de los fármacos , Animales
2.
Org Lett ; 26(29): 6241-6246, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38996353

RESUMEN

In this work, we describe an enantioselective reduction and sulfenylation of isoflavanone derivatives by an ion pair strategy. The chiral cationic catalyst bisguanidinium (BG) is capable of chiral induction in catalytic systems. Silane hydride works as a reductant and helps to form an anionic hypervalent silicate complex and intermediates with substrates to pair with chiral catalyst. A series of umpolung sulfur reagents accomplish electrophilic attack in the presence of a silicate anion. Both chemoselectivity and enantioselectivity are good to excellent to afford a wide scope of 4-oxo-4H-chromene-3-carbonitrile and S-electrophilic reagents. Further transformations were completed to introduce more applications.

3.
Sci Rep ; 14(1): 4932, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418847

RESUMEN

One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Metabolismo Energético , Tejido Adiposo Blanco/metabolismo , Éteres , Fenoles/farmacología , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA