Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 223(11): 1943-1947, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32992328

RESUMEN

Circumsporozoite protein (CSP) coats the Plasmodium falciparum sporozoite surface and is a major malaria subunit vaccine target. We measured epitope-specific reactivity to field-derived CSP haplotypes in serum samples from Malian adults and children on a custom peptide microarray. Compared to children, adults showed greater antibody responses and responses to more variants in regions proximal to and within the central repeat region. Children acquired short-lived immunity to an epitope proximal to the central repeat region but not to the central repeat region itself. This approach has the potential to differentiate immunodominant from protective epitope-specific responses when combined with longitudinal infection data.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos , Vacunas contra la Malaria , Malaria Falciparum , Adulto , Niño , Epítopos , Humanos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Vacunas de Subunidad/inmunología
2.
Proc Natl Acad Sci U S A ; 115(30): E7005-E7014, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987007

RESUMEN

Inversion polymorphisms in the African malaria vector Anopheles gambiae segregate along climatic gradients of aridity. Despite indirect evidence of their adaptive significance, little is known of the phenotypic targets of selection or the underlying genetic mechanisms. Here we adopt a systems genetics approach to explore the interaction of two inversions on opposite arms of chromosome 2 with gender, climatic conditions, and one another. We measure organismal traits and transcriptional profiles in 8-d-old adults of both sexes and four alternative homokaryotypic classes reared under two alternative climatic regimes. We show that karyotype strongly influences both organismal traits and transcriptional profiles but that the strength and direction of the effects depend upon complex interactions with gender and environmental conditions and between inversions on independent arms. Our data support the suppressed recombination model for the role of inversions in local adaptation, and-supported by transcriptional and physiological measurements following perturbation with the drug rapamycin-suggest that one mechanism underlying their adaptive role may be the maintenance of energy homeostasis.


Asunto(s)
Adaptación Fisiológica/genética , Anopheles/genética , Inversión Cromosómica , Cromosomas de Insectos/genética , Carácter Cuantitativo Heredable , Transcriptoma , Animales , Femenino , Masculino
3.
Lancet ; 393(10174): 910-917, 2019 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-30773281

RESUMEN

BACKGROUND: The introduction of HLA matching of donors and recipients was a breakthrough in kidney transplantation. However, half of all transplanted kidneys still fail within 15 years after transplantation. Epidemiological data suggest a fundamental role of non-HLA alloimmunity. METHODS: We genotyped 477 pairs of deceased donors and first kidney transplant recipients with stable graft function at three months that were transplanted between Dec 1, 2005, and April 30, 2015. Genome-wide genetic mismatches in non-synonymous single nucleotide polymorphisms (nsSNPs) were calculated to identify incompatibilities in transmembrane and secreted proteins. We estimated the association between nsSNP mismatch and graft loss in a Cox proportional hazard model, adjusting for HLA mismatch and clinical covariates. Customised peptide arrays were generated to screen for antibodies against genotype-derived mismatched epitopes in 25 patients with biopsy-confirmed chronic antibody-mediated rejection. FINDINGS: 59 268 nsSNPs affecting a transmembrane or secreted protein were analysed. The median number of nsSNP mismatches in immune-accessible transmembrane and secreted proteins between donors and recipients was 1892 (IQR 1850-1936). The degree of nsSNP mismatch was independently associated with graft loss in a multivariable model adjusted for HLA eplet mismatch (HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ, and HLA-DR). Each increase by a unit of one IQR had an HR of 1·68 (95% CI 1·17-2·41, p=0·005). 5-year death censored graft survival was 98% in the quartile with the lowest mismatch, 91% in the second quartile, 89% in the third quartile, and 82% in the highest quartile (p=0·003, log-rank test). Customised peptide arrays verified a donor-specific alloimmune response to genetically predicted mismatched epitopes. INTERPRETATION: Genetic mismatch of non-HLA haplotypes coding for transmembrane or secreted proteins is associated with an increased risk of functional graft loss independently of HLA incompatibility. As in HLA alloimmunity, donor-specific alloantibodies can be identified against genotype derived non-HLA epitopes. FUNDING: Austrian Science Fund, WWTF (Vienna Science and Technology Fund), and Ministry of Health of the Czech Republic.


Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/epidemiología , Supervivencia de Injerto , Prueba de Histocompatibilidad/estadística & datos numéricos , Trasplante de Riñón/estadística & datos numéricos , Adulto , Anticuerpos/inmunología , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Rechazo de Injerto/inmunología , Antígenos HLA/inmunología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Donantes de Tejidos
4.
Nature ; 487(7407): 375-9, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22722859

RESUMEN

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Asunto(s)
Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Alelos , Genoma de Protozoos , Genotipo , Humanos , Filogenia , Plasmodium falciparum/clasificación , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal
5.
Mol Biol Evol ; 33(3): 603-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26613787

RESUMEN

If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genética de Población , Plasmodium/genética , Frecuencia de los Genes , Genoma de Protozoos , Genómica , Genotipo , Haplotipos , Humanos , Malaria/parasitología , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Control de Calidad , Reproducibilidad de los Resultados , Selección Genética
6.
J Infect Dis ; 211(5): 670-9, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25180241

RESUMEN

BACKGROUND: The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS: P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS: The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS: K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Malaria Falciparum/parasitología , Mutación , Plasmodium falciparum/efectos de los fármacos , Asia Sudoriental , Genotipo , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética
7.
Funct Integr Genomics ; 15(4): 439-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25634120

RESUMEN

Culex pipiens mosquitoes are important disease vectors inhabiting temperate zones, worldwide. The seasonal reduction in temperature and photoperiod accompanying late summer and early fall prompts female mosquitoes to enter diapause, a stage of developmental arrest and physiological conditioning that enhances survival during the winter months. To investigate the molecular mechanisms underlying diapause induction, we used custom whole transcriptome microarrays to identify differences in gene expression following exposure to nondiapause (long days, 25 °C) and diapause-inducing (short days, 18 °C) environmental conditions. Using a two-way ANOVA, we identified 1130 genes that were differentially expressed. We used the expression of these genes across three time points to construct a gene co-expression network comprising five modules. Genes in modules 1, 2, and 3 were largely up-regulated, while genes in modules 4 and 5 were down-regulated when compared to nondiapause conditions. Pathway enrichment analysis of the network modules revealed some potential regulatory mechanisms driving diapause induction. Module 1 was enriched for genes in the TGF-ß and Wnt signaling pathways; module 2 was enriched for genes involved in insect hormone biosynthesis, specifically, ecdysone synthesis; module 3 was enriched for genes involved in chromatin modification; and module 5 was enriched for genes in the circadian rhythm pathway. Our results suggest that TGF-ß signaling and chromatin modification are key drivers for the integration of environmental signals into the diapause induction phase in C. pipiens mosquitoes.


Asunto(s)
Culex/genética , Diapausa de Insecto/genética , Redes Reguladoras de Genes , Genes de Insecto , Transcriptoma , Animales , Ensamble y Desensamble de Cromatina/genética , Ritmo Circadiano/genética , Culex/crecimiento & desarrollo , Ecdisona/genética , Femenino , Factor de Crecimiento Transformador beta/genética , Vía de Señalización Wnt
8.
PLoS Pathog ; 9(6): e1003426, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785288

RESUMEN

Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD) has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Ubiquitinación/fisiología , Línea Celular , Proteínas de Cloroplastos/genética , Humanos , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/genética , Toxoplasma/genética
9.
BMC Genomics ; 15: 719, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25159520

RESUMEN

BACKGROUND: Analysis of single nucleotide polymorphisms (SNPs) derived from whole-genome studies allows for rapid evaluation of genome-wide diversity, and genomic epidemiology studies of Plasmodium falciparum provide insights into parasite population structure, gene flow, drug resistance and vaccine development. In areas with adequate cold chain facilities, large volumes of leukocyte-depleted patient blood can be frozen for use in parasite genomic analyses. In more remote endemic areas smaller volumes of infected blood are taken by finger prick, and dried and stored on filter paper. These dried blood spots do not generally yield enough concentrated parasite DNA for whole-genome sequencing. RESULTS: A DNA microarray was designed for use on field samples to type a genome-wide set of SNPs which prior sequencing had shown to be variable in Africa, Southeast Asia, and Papua New Guinea. An algorithm was designed to call SNPs in samples with low parasite DNA. With this new algorithm SNP-calling accuracy of 98% was measured by hybridizing purified DNA from malaria lab strains and comparing calls with SNPs called from full genome sequences. An average accuracy of >98% was likewise obtained for DNA extracted from malaria field samples collected in studies in Southeast Asia, with an average call rate of > 82%. CONCLUSION: This new high-density microarray provided high quality SNP calls from a wide range of parasite DNA quantities, and represents a robust tool for genome-wide analysis of malaria parasites in diverse settings.


Asunto(s)
ADN Protozoario/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , ADN Protozoario/aislamiento & purificación , ADN Protozoario/normas , Técnicas de Genotipaje/métodos , Técnicas de Genotipaje/normas , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Estándares de Referencia
10.
Mol Ecol ; 23(9): 2242-59, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24673723

RESUMEN

Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioural and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii--the species that breeds in more stable, biotically complex and potentially polluted urban water bodies--overexpresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such overexpression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements.


Asunto(s)
Anopheles/genética , Ecosistema , Insectos Vectores/genética , Transcriptoma , Animales , Camerún , Genética de Población , Geografía , Larva/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Urbanización
11.
Mol Ecol ; 23(11): 2686-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24766086

RESUMEN

Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.


Asunto(s)
Aclimatación/genética , Cambio Climático , Genética de Población , Lepidópteros/genética , Animales , Femenino , Expresión Génica , Lepidópteros/clasificación , Datos de Secuencia Molecular , América del Norte , Dinámica Poblacional , Especificidad de la Especie , Temperatura , Transcriptoma
12.
J Immunol ; 188(8): 3716-23, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22422887

RESUMEN

Failure to efficiently clear apoptotic cells is linked to defects in development and the onset of autoimmunity. Complement component C1q is required for efficient engulfment of apoptotic cells in mice and humans; however, the molecular mechanisms leading to C1q-dependent engulfment are not fully understood. In this study, we used primary mouse macrophages to identify and characterize a novel molecular mechanism for macrophage-mediated C1q-dependent engulfment of apoptotic cells. We found that macrophage activation with C1q resulted in cycloheximide-sensitive enhanced engulfment, indicating a requirement for de novo protein synthesis. To investigate the cycloheximide-sensitive pathway, C1q-elicited macrophage transcripts were identified by microarray. C1q triggered the expression of Mer tyrosine kinase (Mer) and the Mer ligand growth arrest-specific 6: a receptor-ligand pair that mediates clearance of apoptotic cells. Full-length native C1q, and not the collagen-like tail or heat-denatured protein, stimulated Mer expression. This novel pathway is specific to C1q because mannose-binding lectin, a related collectin, failed to upregulate Mer expression and function. Soluble Mer-Fc fusion protein inhibited C1q-dependent engulfment of apoptotic cells, indicating a requirement for Mer. Moreover, Mer-deficient macrophages failed to respond to C1q with enhanced engulfment. Our results suggest that C1q elicits a macrophage phenotype specifically tailored for apoptotic cell clearance, and these data are consistent with the established requirement for C1q in prevention of autoimmunity.


Asunto(s)
Apoptosis , Complemento C1q/inmunología , Macrófagos/inmunología , Proteínas Proto-Oncogénicas/inmunología , ARN Mensajero/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Animales , Autoinmunidad , Activación de Complemento/efectos de los fármacos , Activación de Complemento/genética , Activación de Complemento/inmunología , Complemento C1q/genética , Cicloheximida/farmacología , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Macrófagos/citología , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/biosíntesis , Proteínas Tirosina Quinasas Receptoras/deficiencia , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal , Tirosina Quinasa c-Mer
13.
Dev Dyn ; 242(12): 1466-77, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24026811

RESUMEN

BACKGROUND: In Drosophila melanogaster, commissureless (comm) function is required for proper nerve cord development. Although comm orthologs have not been identified outside of Drosophila species, some insects possess orthologs of Drosophila comm2, which may also regulate embryonic nerve cord development. Here, this hypothesis is explored through characterization of comm2 genes in two disease vector mosquitoes. RESULTS: Culex quinquefasciatus (West Nile and lymphatic filiariasis vector) has three comm2 genes that are expressed in the developing nerve cord. Aedes aegypti (dengue and yellow fever vector) has a single comm2 gene that is expressed in commissural neurons projecting axons toward the midline. Loss of comm2 function in both A. aegypti and D. melanogaster was found to result in loss of commissure defects that phenocopy the frazzled (fra) loss of function phenotypes observed in both species. Loss of fra function in either insect was found to result in decreased comm2 transcript levels during nerve cord development. CONCLUSIONS: The results of this investigation suggest that Fra down-regulates repulsion in precrossing commissural axons by regulating comm2 levels in both A. aegypti and D. melanogaster, both of which require Comm2 function for proper nerve cord development.


Asunto(s)
Aedes/genética , Culex/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Receptores de Superficie Celular/metabolismo , Aedes/embriología , Animales , Secuencia de Bases , Análisis por Conglomerados , Culex/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Proteínas de la Membrana/genética , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Receptores de Netrina , Filogenia , Interferencia de ARN , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
Front Immunol ; 15: 1385121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119337

RESUMEN

Introduction: Before they can produce their own antibodies, newborns are protected from infections by transplacental transfer of maternal IgG antibodies and after birth through breast milk IgA antibodies. Rhinovirus (RV) infections are extremely common in early childhood, and while RV infections often result in only mild upper respiratory illnesses, they can also cause severe lower respiratory illnesses such as bronchiolitis and pneumonia. Methods: We used high-density peptide arrays to profile infant and maternal antibody reactivity to capsid and full proteome sequences of three human RVs - A16, B52, and C11. Results: Numerous plasma IgG and breast milk IgA RV epitopes were identified that localized to regions of the RV capsid surface and interior, and also to several non-structural proteins. While most epitopes were bound by both IgG and IgA, there were several instances where isotype-specific and RV-specific binding were observed. We also profiled 62 unique RV-C protein loop sequences characteristic of this species' capsid VP1 protein. Discussion: Many of the RV-C loop sequences were highly bound by IgG from one-year-old infants, indicating recent or ongoing active infections, or alternatively, a level of cross-reactivity among homologous RV-C sites.


Asunto(s)
Anticuerpos Antivirales , Inmunoglobulina G , Leche Humana , Rhinovirus , Humanos , Leche Humana/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Lactante , Rhinovirus/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina A/sangre , Infecciones por Picornaviridae/inmunología , Recién Nacido , Epítopos/inmunología , Proteínas de la Cápside/inmunología , Adulto
15.
Autoimmun Rev ; 23(5): 103535, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552995

RESUMEN

Deposition of autoantibodies in glomeruli is a key factor in the development of lupus nephritis (LN). For a long time, anti-dsDNA and anti-C1q antibodies were thought to be the main cause of the kidney damage. However, recent studies have shown that the list of autoantibidies that have renal tropism and deposit in the kidney in LN is increasing and the link between anti-dsDNA and renal pathology is weak due to potential confounders. Aspecific bindings of dsDNA with cationic antibodies and of anti-dsDNA with several renal antigens such as actinin, laminin, entactin, and annexinA2 raised doubts about the specific target of these antibodies in the kidney. Moreover, the isotype of anti-dsDNA in SLE and LN has never received adequate interest until the recent observation that IgG2 are preponderant over IgG1, IgG3 and IgG4. Based on the above background, recent studies investigated the involvement of anti-dsDNA IgG2 and of other antibodies in LN. It was concluded that circulating anti-dsDNA IgG2 levels do not distinguish between LN versus non-renal SLE, and, in patients with LN, their levels do not change over time. Circulating levels of other antibodies such as anti-ENO1 and anti-H2 IgG2 were, instead, higher in LN vs non-renal SLE at the time of diagnosis and decreased following therapies. Finally, new classes of renal antibodies that potentially modify the anti-inflammatory response in the kidney are emerging as new co-actors in the pathogenetic scenario. They have been defined as 'second wave antibodies' for the link with detoxifying mechanisms limiting the oxidative stress in glomeruli that are classically stimulated in a second phase of inflammation. These findings have important clinical implications that may modify the laboratory approach to LN. Serum levels of anti-ENO1 and anti-H2 IgG2 should be measured in the follow up of patients for designing the length of therapies and identify those patients who respond to treatments. Anti-SOD2 could help to monitor and potentiate the anti-inflammatory response in the kidney.


Asunto(s)
Autoanticuerpos , Nefritis Lúpica , Nefritis Lúpica/inmunología , Nefritis Lúpica/diagnóstico , Humanos , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Animales , Anticuerpos Antinucleares/inmunología , Anticuerpos Antinucleares/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Autoantígenos/inmunología
16.
Front Immunol ; 14: 1257722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954609

RESUMEN

Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.


Asunto(s)
Coxiella burnetii , Fiebre Q , Humanos , Animales , Ovinos , Bovinos , Coxiella burnetii/genética , Fiebre Q/prevención & control , Fiebre Q/veterinaria , Formación de Anticuerpos , Epítopos , Proteoma , Mapeo Epitopo , Vacunación/veterinaria , Rumiantes , Cabras , Péptidos , Vacunas Bacterianas
17.
Front Immunol ; 14: 1267638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809089

RESUMEN

Introduction: Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods: Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results: Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion: Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Animales , Humanos , Macaca mulatta , Epítopos
18.
mSphere ; 8(5): e0045123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791774

RESUMEN

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Preescolar , Receptor de Proteína C Endotelial/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Epítopos , Péptidos
19.
Foot (Edinb) ; 53: 101946, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36463612

RESUMEN

OBJECTIVES: A mal-aligned foot posture (high-arched and flat feet) and poor single leg balance ability have been separately associated with foot injuries during running. Therefore, clinicians assess these routinely. However, the extent to which foot posture and single-leg balance ability affect actual foot biomechanics during running is not known. This study aims to investigate the association of foot posture, single-leg balance ability, and foot biomechanics during running. METHOD: This is a cross sectional study of sixty-nine participants who had their foot postures and single-leg balance ability assessed. The Foot Posture Index and Balance Error Scoring System were used. Their foot kinetics was measured as they ran on an instrumented treadmill and foot kinematics was processed using a 3D motion capture system. Multiple-regression was used to analyse the variance of foot biomechanics explained by foot posture and single-leg balance ability. RESULTS: Foot posture and single-leg balance ability were found to account significantly for the variance in rearfoot eversion (24%) and forefoot dorsiflexion (7%). Two regression equations were derived, where rearfoot eversion and forefoot dorsiflexion during running may be predicted. CONCLUSION: Foot posture and single-leg balance ability can predict rearfoot eversion and forefoot dorsiflexion only during running. Based on the regression equations, individuals with the same foot posture but different single-leg balance ability may exhibit different foot kinematics. However, the angular differences are small. The equations may be useful for clinicians working in places where running gait analysis equipment are not readily accessible. Further studies with larger sample sizes are required to validate these equations. In addition, further studies are necessary to investigate the effect of these two variables under different running conditions e.g. with footwear and with orthoses.


Asunto(s)
Pie , Marcha , Humanos , Estudios Transversales , Fenómenos Biomecánicos , Postura
20.
Sci Rep ; 12(1): 13659, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953506

RESUMEN

Evidence has shown that podocyte-directed autoantibodies can cause membranous nephropathy (MN). In the present work we investigated sera of MN patients using a high-density peptide array covering the whole coding sequences of the human genome encompassing 7,499,126 tiled peptides. A panel of 21 proteins reactive to MN sera were identified. We focused our attention on Formin-like 1 (FMNL1), a protein expressed by macrophages in MN patients tissues. High levels of anti-FMNL1 IgG4 were demonstrated in sera of MN patients with an orthogonal methodology (ELISA) contemporary demonstrating FMNL1 positive cells in kidney co-staining with CD68 in glomeruli. High levels of circulating anti-FMNL1 IgG4 were associated with lack of remission of proteinuria, potentially indicating that autoantibodies directed against cells other than podocytes, involved in tissue repair, might play a role in MN disease progression. High serum levels of anti-FMNL1 IgGs were also observed in other non-autoimmune glomerolonephrites, i.e. idiopathic and genetic FSGS, IgAGN. These findings are suggestive of a broader role of those autoantibodies in other glomerular disease conditions.


Asunto(s)
Glomerulonefritis Membranosa , Autoanticuerpos , Forminas , Humanos , Inmunoglobulina G , Receptores de Fosfolipasa A2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA