Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 617(7959): 162-169, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100914

RESUMEN

The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol1. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs)2,3. Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs-about 50 MDa-is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence4-11. Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides-in the terminology of the Flory polymer theory12-a 'good solvent' environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder-function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Proteínas Intrínsecamente Desordenadas , Proteínas de Complejo Poro Nuclear , Animales , Inteligencia Artificial , Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Microscopía Fluorescente
2.
Nat Methods ; 20(4): 523-535, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973549

RESUMEN

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas , Transferencia Resonante de Energía de Fluorescencia/métodos , Reproducibilidad de los Resultados , Proteínas/química , Conformación Molecular , Laboratorios
3.
Nat Methods ; 13(12): 997-1000, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27749839

RESUMEN

We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.


Asunto(s)
Proteínas Fluorescentes Verdes/biosíntesis , Complejos Multiproteicos/biosíntesis , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Virales/biosíntesis , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Técnicas de Cultivo de Célula , Transferencia Resonante de Energía de Fluorescencia/métodos , Código Genético , Vectores Genéticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Proteínas Virales/química , Proteínas Virales/genética
4.
Angew Chem Int Ed Engl ; 58(14): 4720-4724, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30703278

RESUMEN

The recognition of intrinsically disordered proteins (IDPs) is highly dependent on dynamics owing to the lack of structure. Here we studied the interplay between dynamics and molecular recognition in IDPs with a combination of time-resolving tools on timescales ranging from femtoseconds to nanoseconds. We interrogated conformational dynamics and surface water dynamics and its attenuation upon partner binding using two IDPs, IBB and Nup153FG, both of central relevance to the nucleocytoplasmic transport machinery. These proteins bind the same nuclear transport receptor (Importinß) with drastically different binding mechanisms, coupled folding-binding and fuzzy complex formation, respectively. Solvent fluctuations in the dynamic interface of the Nup153FG-Importinß fuzzy complex were largely unperturbed and slightly accelerated relative to the unbound state. In the IBB-Importinß complex, on the other hand, substantial relative slowdown of water dynamics was seen in a more rigid interface. These results show a correlation between interfacial water dynamics and the plasticity of IDP complexes, implicating functional relevance for such differential modulation in cellular processes, including nuclear transport.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Termodinámica , Agua/metabolismo , beta Carioferinas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Agua/química , beta Carioferinas/química
5.
J Am Chem Soc ; 139(41): 14456-14469, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28937758

RESUMEN

Huntington's disease is caused by expansion of a polyglutamine (polyQ) domain within exon 1 of the huntingtin gene (Httex1). The prevailing hypothesis is that the monomeric Httex1 protein undergoes sharp conformational changes as the polyQ length exceeds a threshold of 36-37 residues. Here, we test this hypothesis by combining novel semi-synthesis strategies with state-of-the-art single-molecule Förster resonance energy transfer measurements on biologically relevant, monomeric Httex1 proteins of five different polyQ lengths. Our results, integrated with atomistic simulations, negate the hypothesis of a sharp, polyQ length-dependent change in the structure of monomeric Httex1. Instead, they support a continuous global compaction with increasing polyQ length that derives from increased prominence of the globular polyQ domain. Importantly, we show that monomeric Httex1 adopts tadpole-like architectures for polyQ lengths below and above the pathological threshold. Our results suggest that higher order homotypic and/or heterotypic interactions within distinct sub-populations of neurons, which are inevitable at finite cellular concentrations, are likely to be the main source of sharp polyQ length dependencies of HD.


Asunto(s)
Exones/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Péptidos/genética , Péptidos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Enfermedad de Huntington/genética , Prolina/metabolismo , Reproducibilidad de los Resultados
6.
Proc Natl Acad Sci U S A ; 110(50): 20069-74, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277837

RESUMEN

Fluorescence nanosectioning within a submicron region above an interface is desirable for many disciplines in the life sciences. A drawback, however, to most current approaches is the a priori need to physically scan a sculptured point spread function in the axial dimension, which can be undesirable for optically sensitive or highly dynamic samples. Here we demonstrate a fluorescence imaging approach that can overcome the need for scanning by exploiting the position-dependent emission spectrum of fluorophores above a simple biocompatible nanostructure. To achieve this we have designed a thin metal-dielectric-coated substrate, where the spectral modification to the total measured fluorescence can be used to estimate the axial fluorophore distribution within distances of 10-150 nm above the substrate with an accuracy of up to 5-10 nm. The modeling and feasibility of the approach are verified and successfully applied to elucidate nanoscale adhesion protein and filopodia dynamics in migrating cells. It is likely that the general principle can find broader applications in, for example, single-molecule studies, biosensing, and studying fast dynamic processes.


Asunto(s)
Movimiento Celular/fisiología , Metales/química , Microtomía/métodos , Nanoestructuras , Transferencia Resonante de Energía de Fluorescencia , Microscopía/métodos , Modelos Teóricos
7.
Methods Enzymol ; 611: 327-346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30471692

RESUMEN

Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex. They are highly dynamic under physiological conditions and studying their interaction with nuclear transport receptors (NTRs) is key to understanding the molecular mechanism of nucleocytoplasmic transport. Distinct conformational features of FG-Nups interacting with diverse NTRs can be detected by multiparameter single-molecule fluorescence energy transfer (smFRET), which is a powerful technique for studying the dynamics and interactions of biomolecules in solution. Here we provide a detailed protocol utilizing smFRET to reveal differential binding mechanisms of FG-Nups to NTRs, with a focus on practical considerations on sample preparation of unglycosylated and glycosylated FG-Nups, site-specific dual-labeling, smFRET measurements, and data analysis.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Diseño de Equipo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Glicina/análisis , Glicina/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/química , Fenilalanina/análisis , Fenilalanina/metabolismo , Unión Proteica , Conformación Proteica
8.
Cell Rep ; 22(13): 3660-3671, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590630

RESUMEN

Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an "archetypal-fuzzy" complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lower than in the archetypal-fuzzy complex between FG-Nup153 and NTRs. Unexpectedly, this behavior appears not to be encoded selectively into CRM1 but rather into the FG-Nup214 sequence. The same distinct binding mechanisms are unperturbed in O-linked ß-N-acetylglucosamine-modified FG-Nups. Our results have implications for differential roles of distinctly spatially distributed FG-Nup⋅NTR interactions in the cell.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Glicina/metabolismo , Humanos , Modelos Moleculares , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Fenilalanina/metabolismo , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA