Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339731

RESUMEN

Compared to conventional radars, arc array synthetic aperture radar (SAR) enables wide-area observation under ideal conditions. However, helicopters carrying arc array SAR platforms are generally smaller in size and more sensitive to vibration, which has a greater impact on the imaging quality. In this paper, the vibration error of the arc array SAR platform is investigated, and a vibration error model of the arc array SAR platform is established. Based on the study of the vibration error model, a vibration phase estimation and compensation algorithm based on the delayed conjugate multiplication method is proposed. In the first step, distance pulse pressure processing is performed on the echo signal. In the second step, the pulse pressure signals and their delays in the same distance unit are subjected to conjugate multiplication, and the phase of the signal after conjugate multiplication is extracted. The extracted phase is then amplitude- and phase-compensated to estimate the vibration phase. In the third step, the vibration phase is compensated in the azimuthal direction of the distance pulse pressure signal, and the pairwise echo is eliminated, which completes the compensation of the airborne arc array SAR vibration platform.

2.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400328

RESUMEN

As urban economies flourish and populations become increasingly concentrated, urban surface deformation has emerged as a critical factor in city planning that cannot be overlooked. Surface deformation in urban areas can lead to deformations in structural supports of infrastructure such as road bases and bridges, thereby posing a serious threat to public safety and creating significant safety hazards. Consequently, research focusing on the monitoring of urban surface deformation holds paramount importance. Interferometric synthetic aperture radar (InSAR), as an important means of earth observation, has all-day, wide-range, high-precision, etc., characteristics and is widely used in the field of surface deformation monitoring. However, traditional solitary InSAR techniques are limited in their application scenarios and computational characteristics. Additionally, the manual selection of ground control points (GCPs) is fraught with errors and uncertainties. Permanent scatterers (PS) can maintain high interferometric coherence in man-made building areas, and distributed scatterers (DS) usually show moderate coherence in areas with short vegetation; the combination of DS and PS solves the problem of manually selecting GCPs during track re-flattening and regrading, which affects the monitoring results. In this paper, 45 Sentinel-1B data from 16 February 2019 to 14 December 2021 are used as the data source in the urban area of Horqin District, Tongliao City, Inner Mongolia Autonomous Region, for example. A four-threshold (coherence coefficient threshold, FaSHPS adaptive threshold, amplitude divergence index threshold, and deformation velocity interval) GCPs point screening method for PS-DS, as well as a Small Baseline Subset-Permanent Scatterers-Distributed Scatterers-Interferometric Synthetic Aperture Radar (SBAS-PS-DS-InSAR) method for selecting PS and DS points as ground control points for orbit refinement and re-flattening, are proposed. The surface deformation results obtained using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) and the SBAS-PS-DS-InSAR proposed in this paper were comparatively analysed and verified. The maximum cumulative line-of-sight settlements were -90.78 mm and -83.68 mm, and the maximum cumulative uplifts are 74.94 mm and 97.56 mm, respectively; the maximum annual average line-of-sight settlements are -35.38 mm/y and -30.38 mm/y, and the maximum annual average uplifts are 25.27 mm/y and 27.92 mm/y. The results were evaluated and analysed in terms of correlation, mean absolute error (MAE), and root mean square error (RMSE). The deformation results of the two InSAR methods were evaluated and analysed in terms of correlation, MAE, and RMSE. The errors show that the Pearson correlation coefficients between the vertical settlement results obtained using the SBAS-PS-DS-InSAR method and the GPS monitoring results were closer to 1. The maximum MAE and RMSE were 13.7625 mm and 14.8004 mm, respectively, which are within the acceptable range; this confirms that the monitoring results of the SBAS-PS-DS-InSAR method were better than those of the original SBAS-InSAR method. SBAS-InSAR method, which is valid and reliable. The results show that the surface deformation results obtained using the SBAS-InSAR, SBAS-PS-DS-InSAR, and GPS methods have basically the same settlement locations, extents, distributions, and temporal and spatial settlement patterns. The deformation results obtained using these two InSAR methods correlate well with the GPS monitoring results, and the MAE and RMSE are within acceptable limits. By comparing the deformation information obtained using multiple methods, the surface deformation in urban areas can be better monitored and analysed, and it can also provide scientific references for urban municipal planning and disaster warning.

3.
Sensors (Basel) ; 24(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38544071

RESUMEN

The micro-deformation monitoring radar is usually based on Permanent Scatterer (PS) technology to realize deformation inversion. When the region is continuously monitored for a long time, the radar image amplitude and pixel variance will change significantly with time. Therefore, it is difficult to select phase-stable scatterers by conventional amplitude deviation methods, as they can seriously affect the accuracy of deformation inversion. For different regions studied within the same scenario, using a PS selection method based on the same threshold often increases the size of the deformation error. Therefore, this paper proposes a new PS selection method based on the Gaussian Mixture Model (GMM). Firstly, PS candidates (PSCs) are selected based on the pixels' amplitude information. Then, the amplitude deviation index of each PSC is calculated, and each pixel's probability values in different Gaussian distributions are acquired through iterations. Subsequently, the cluster types of pixels with larger probability values are designated as low-amplitude deviation pixels. Finally, the coherence coefficient and phase stability of low-amplitude deviation pixels are calculated. By comparing the probability values of each of the pixels in different Gaussian distributions, the cluster type with the larger probability, such as high-coherence pixels and high-phase stability pixels, is selected and designated as the final PS. Our analysis of the measured data revealed that the proposed method not only increased the number of PSs in the group, but also improved the stability of the number of PSs between groups.

4.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904878

RESUMEN

An arc array synthetic aperture radar (AA-SAR) is a new type of omnidirectional observation and imaging system. Based on linear array 3D imaging, this paper introduces a keystone algorithm combined with the arc array SAR 2D imaging method and proposes a modified 3D imaging algorithm based on keystone transformation. The first step is to discuss the target azimuth angle, retain the far-field approximation method of the first-order term, analyze the influence of the forward motion of the platform on the along-track position, and realize the two-dimensional focusing of the target slant range-azimuth direction. The second step is to redefine a new azimuth angle variable in the slant-range along-track imaging and use the keystone-based processing algorithm in the range frequency domain to eliminate the coupling term generated by the array angle and the slant-range time. The corrected data are used to perform along-track pulse compression to obtain the focused image of the target and realize the three-dimensional imaging of the target. Finally, in this article, the spatial resolution of the AA-SAR system in the forward-looking state is analyzed in detail, and the change in the spatial resolution of the system and the effectiveness of the algorithm are verified through simulation.

5.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896471

RESUMEN

Conventional squinted sliding spotlight synthetic aperture radar (SAR) imaging suffers from substantial swath width reduction and complex processing requirements due to the continuous variation in the squint angle and the large range cell migration (RCM) throughout the data acquisition interval. A novel two-dimensional (2D) beam scanning mode for high-resolution wide swath (HRWS) imaging is proposed. The key to the novel imaging mode lies in the synchronous scanning of azimuth and range beams, allowing for a broader and more flexible imaging swath with a high geometric resolution. Azimuth beam scanning from fore to aft was used to improve the azimuth resolution, while range beam scanning was adopted to illuminate the oblique wide swath to avoid the large RCM and the serious swath width reduction. Compared with the conventional sliding spotlight mode, both the swath width and swath length could be extended. According to the echo model of this imaging mode, an echo signal preprocessing approach is proposed. The key points of this approach are range data extension and azimuth data upsampling. A designed system example with a resolution of 0.5 m, swath width of 60 km, and azimuth coverage length of 134 km is presented. Furthermore, a simulation experiment on point targets was carried out. Both the presented system example and imaging results of point targets validated the proposed imaging mode.

6.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35808222

RESUMEN

Arc array synthetic aperture radar (AA-SAR), which can observe the scene in all directions, breaks through the single view of traditional SAR. However, the concealment of AA-SAR is poor. To mitigate this, arc array bistatic SAR (AA-BiSAR) with the moving transmitter is proposed, it has the advantages of good concealment and can expand the imaging scene, and improve the flexibility of the system. The imaging geometry including the signal model is established, and a range frequency-domain algorithm based on keystone transform (KT) is proposed in this paper. In the first step, the slant range equation is approximated by Taylor series expansion to compensate for the residual phase caused by the transmitter motion. In the second step, the range cell migration between the range and azimuth is eliminated through the KT method in the range frequency-domain. In the third step, using the data after range cell migration correction in step 2, an azimuth pulse compression is performed to obtain the focused image. In addition, the spatial resolution of the AA-BiSAR system is analyzed in detail. Finally, three simulation results verify the effectiveness of the proposed algorithm and the change in the spatial resolution.

7.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36502030

RESUMEN

The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw data in each block are insufficiently sampled. To resolve the two problems, a novel azimuth full-aperture pre-processing method is proposed to handle the SAR raw data formed by the BV-PRF scheme. The key point of the approach is the resampling of block data with different PRFs and the continuous splicing of azimuth data. The method mainly consists of four parts: de-skewing, resampling, azimuth continuous combination, and Doppler history recovery. After de-skewing, the raw data with different PRFs can be resampled individually to obtain a uniform azimuth sampling interval, and an appropriate azimuth time shift is introduced to ensure the continuous combination of the azimuth signal. Consequently, the resulting raw data are sufficiently and uniformly sampled in azimuth, which could be well handled by classical SAR-focusing algorithms. Simulation results on point targets validate the proposed azimuth pre-processing approach. Furthermore, compared with methods to process SAR data with continuous PRF, the proposed method is more effective.


Asunto(s)
Algoritmos , Radar , Movimiento Celular , Simulación por Computador , Imagen de Difusión por Resonancia Magnética
8.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34640808

RESUMEN

In synthetic aperture radar (SAR) imaging, geometric resolution, sidelobe level (SLL) and signal-to-noise ratio (SNR) are the most important parameters for measuring the SAR image quality. The staring spotlight mode continuously transmits signals to a fixed area by steering the azimuth beam to acquire azimuth high geometric resolution, and its two-dimensional (2D) impulse response with the low SLL is usually obtained from the 2D weighted power spectral density (PSD) by the selected weighting window function. However, this results in the SNR reduction due to 2D amplitude window weighting. In this paper, the staring spotlight SAR with nonlinear frequency modulation (NLFM) signal and azimuth non-uniform sampling (ANUS) is proposed to obtain high geometric resolution SAR images with the low SLL and almost without any SNR reduction. The NLFM signal obtains non-equal interval frequency sampling points under uniform time sampling by adjusting the instantaneous chirp rate. Its corresponding PSD is similar to the weighting window function, and its pulse compression result without amplitude window weighting has low sidelobes. To obtain a similar Doppler frequency distribution for low sidelobe imaging in azimuth, the received SAR echoes are designed to be non-uniformly sampled in azimuth, in which the sampling sequence is dense in middle and sparse in both ends, and azimuth compression result with window weighting would also have low sidelobes. According to the echo model of the proposed imaging mode, both the back projection algorithm (BPA) and range migration algorithm (RMA) are modified and presented to handle the raw data of the proposed imaging mode. Both imaging results on simulated targets and experimental real SAR data processing results of a ground-based radar validate the proposed low sidelobe imaging mode.


Asunto(s)
Diagnóstico por Imagen , Radar , Algoritmos , Relación Señal-Ruido
9.
Sensors (Basel) ; 19(19)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581680

RESUMEN

A spaceborne azimuth multichannel synthetic aperture radar (SAR) system can effectively realize high resolution wide swath (HRWS) imaging. However, the performance of this system is restricted by its two inherent defects. Firstly, non-uniform sampling is generated if the pulse repetition frequency (PRF) deviates from the optimum value. Secondly, multichannel systems are very sensitive to channel errors, which are difficult to completely eliminate. In this paper, we propose a novel receive antenna architecture with an azimuth phase center adaptive adjustment which adjusts the phase center position of each sub-aperture to improve multichannel SAR system performance. On one hand, the optimum value of the PRF can be adaptively adjusted within a certain range by adjusting receiving phase centers to obtain uniform azimuth sampling. On the other hand, false targets introduced by residual channel errors after azimuth multichannel error compensation can be further suppressed. The effectiveness of the proposed method to compensate for non-uniform sampling and suppress false targets is verified by simulation experiments.

10.
Sensors (Basel) ; 18(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423888

RESUMEN

Ground-based synthetic aperture radar (GB-SAR) uses active microwave remote-sensing observation mode to achieve two-dimensional deformation measurement and deformation trend extraction, which shows great prospects in the field of deformation monitoring. However, in the process of GB-SAR deformation monitoring, the disturbances caused by atmospheric effect cannot be neglected, and the atmospheric phases will seriously affect the precision of deformation monitoring. In discontinuous GB-SAR deformation monitoring mode, the atmospheric phases are particularly affected by changes of time and space, so the traditional models of atmospheric phase correction are no longer applicable. In this paper, the interferometric phase signal model considering atmospheric phase is first established. Then, the time- and space-varying characteristics of the atmospheric phase are analyzed, and a novel time- and space-varying atmospheric phase correction algorithm, based on coherent scatterers analysis, is proposed. Finally, slope deformation monitoring experiments are carried out to verify the validity and robustness of the proposed algorithm.

11.
Sensors (Basel) ; 17(6)2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28574472

RESUMEN

The azimuth multichannel imaging scheme with the large receive antenna divided into multiple sub-apertures usually leads to azimuth non-uniform sampling, and echoes from all azimuth channels should be reconstructed based on the signal model before conventional SAR imaging. Unfortunately, the multichannel signal model of a moving target is different from that of a fixed target. This paper analyzes the multichannel signal model of the moving target and the effect of the target velocity on azimuth multichannel reconstruction. Based on the multichannel signal mode of the moving target, a new multichannel signal reconstruction algorithm is proposed. Furthermore, the slant range velocity is estimated by computing signal energy distribution. Simulation results on point targets validate the proposed approach.

12.
Sensors (Basel) ; 16(8)2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27556471

RESUMEN

With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method.

13.
Curr Probl Cardiol ; 48(3): 101517, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36455794

RESUMEN

Chest pain accounts for a significant attendances at emergency departments (ED). We examined the utility of early stress myocardial perfusion imaging (SMPI) for stratification of low-risk patients post-ED discharge. A retrospective audit was conducted of patients with chest pain and normal troponin-T (<30Ng/L), who were discharged with outpatient SMPI (median = 3 days post-ED discharge) between January 2018 to January 2020. 880 patients were included and followed up for 12 months. Outcomes measured were: 1) Cardiac events (CE) within 1 year of visit or 2) Significant coronary artery disease (CAD) - coronary angiography demonstrating ≥70% stenosis of epicardial vessels or coronary revascularization procedures performed. In the SMPI negative group, 2 of 802 patients (0.25%) had significant CEs and 11 patients (1.37%) were diagnosed with significant CAD. Of the 78 SMPI positive patients, 1 (1.28%) had a significant CE, while 24 had significant CAD. SMPI had a sensitivity of 65.8%, specificity of 93.7%, positive predictive value of 32.1% and a negative predictive value of 98.4% for predicting adverse CE. Early SMPI post-ED discharge demonstrated high negative predictive value in predicting CEs or significant CAD diagnosis at up to 1 year, suggesting that low-risk patients discharge from ED with early outpatient SMPI is a safe management option.


Asunto(s)
Imagen de Perfusión Miocárdica , Humanos , Imagen de Perfusión Miocárdica/métodos , Pacientes Ambulatorios , Estudios Retrospectivos , Dolor en el Pecho/diagnóstico , Dolor en el Pecho/etiología , Servicio de Urgencia en Hospital , Angiografía Coronaria/métodos
14.
Cardiol Res ; 7(5): 181-184, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28197290

RESUMEN

Ventricular septal rupture (VSR) is a well-described and potentially fatal complication of acute myocardial infarctions. In the era of early reperfusion therapy, the incidence has been on the decline. We describe a case of delayed presentation inferior myocardial infarction complicated by VSR requiring early surgery and review our center's experience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA