RESUMEN
The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which FUS mutations and overexpression cause disease, we generated novel transgenic mice globally expressing low levels of human wild-type protein (FUS(WT)) and a pathological mutation (FUS(R521G)). FUS(WT) and FUS(R521G) mice that develop severe motor deficits also show neuroinflammation, denervated neuromuscular junctions, and premature death, phenocopying the human diseases. A portion of FUS(R521G) mice escape early lethality; these escapers have modest motor impairments and altered sociability, which correspond with a reduction of dendritic arbors and mature spines. Remarkably, only FUS(R521G) mice show dendritic defects; FUS(WT) mice do not. Activation of metabotropic glutamate receptors 1/5 in neocortical slices and isolated synaptoneurosomes increases endogenous mouse FUS and FUS(WT) protein levels but decreases the FUS(R521G) protein, providing a potential biochemical basis for the dendritic spine differences between FUS(WT) and FUS(R521G) mice.
Asunto(s)
Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Mutación Missense , Unión Neuromuscular , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Dendritas/genética , Dendritas/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Ratones , Ratones Transgénicos , Actividad Motora/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Columna Vertebral/metabolismo , Columna Vertebral/patologíaRESUMEN
Several critical events dictate the successful establishment of nascent vasculature in yolk sac and in the developing embryos. These include aggregation of angioblasts to form the primitive vascular plexus, followed by the proliferation, differentiation, migration, and coalescence of endothelial cells. Although transforming growth factor-ß (TGF-ß) is known to regulate various aspects of vascular development, the signaling mechanism of TGF-ß remains unclear. Here we show that homeodomain interacting protein kinases, HIPK1 and HIPK2, are transcriptional corepressors that regulate TGF-ß-dependent angiogenesis during embryonic development. Loss of HIPK1 and HIPK2 leads to marked up-regulations of several potent angiogenic genes, including Mmp10 and Vegf, which result in excessive endothelial proliferation and poor adherens junction formation. This robust phenotype can be recapitulated by siRNA knockdown of Hipk1 and Hipk2 in human umbilical vein endothelial cells, as well as in endothelial cell-specific TGF-ß type II receptor (TßRII) conditional mutants. The effects of HIPK proteins are mediated through its interaction with MEF2C, and this interaction can be further enhanced by TGF-ß in a TAK1-dependent manner. Remarkably, TGF-ß-TAK1 signaling activates HIPK2 by phosphorylating a highly conserved tyrosine residue Y-361 within the kinase domain. Point mutation in this tyrosine completely eliminates the effect of HIPK2 as a transcriptional corepressor in luciferase assays. Our results reveal a previously unrecognized role of HIPK proteins in connecting TGF-ß signaling pathway with the transcriptional programs critical for angiogenesis in early embryonic development.
Asunto(s)
Proteínas Portadoras/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Neovascularización Fisiológica/genética , Proteínas Serina-Treonina Quinasas/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Uniones Adherentes/enzimología , Uniones Adherentes/ultraestructura , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proliferación Celular , Secuencia Conservada , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Metaloproteinasa 10 de la Matriz/genética , Metaloproteinasa 10 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteolisis , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Cockayne syndrome (CS) is a rare autosomal recessive neurodegenerative disease that is associated with mutations in either of two transcription-coupled DNA repair genes, CSA or CSB. Mice with a targeted mutation in the Csb gene (Cs-b(m/m)) exhibit a milder phenotype compared with human patients with mutations in the orthologous CSB gene. Mice mutated in Csb were crossed with mice lacking Xpc (Xp-c(-/-)), the global genome repair gene, to enhance the pathological symptoms. These Cs-b(m/m).Xp-c(-/-) mice were normal at birth but exhibited progressive failure to thrive, whole-body wasting, and ataxia and died at approximately postnatal day 21. Characterization of Cs-b(m/m).Xp-c(-/-) brains at postnatal stages demonstrated widespread reduction of myelin basic protein (MBP) and myelin in the sensorimotor cortex, the stratum radiatum, the corpus callosum, and the anterior commissure. Quantification of individual axons by electron microscopy showed a reduction in both the number of myelinated axons and the average diameter of myelin surrounding the axons. There were no significant differences in proliferation or oligodendrocyte differentiation between Cs-b(m/m).Xp-c(-/-) and Cs-b(m/+).Xp-c(-/-) mice. Rather, Cs-b(m/m).Xp-c(-/-) oligodendrocytes were unable to generate sufficient MBP or to maintain the proper myelination during early development. Csb is a multifunctional protein regulating both repair and the transcriptional response to reactive oxygen through its interaction with histone acetylase p300 and the hypoxia-inducible factor (HIF)1 pathway. On the basis of our results, combined with that of others, we suggest that in Csb the transcriptional response predominates during early development, whereas a neurodegenerative response associated with repair deficits predominates in later life.
Asunto(s)
Síndrome de Cockayne/genética , Vaina de Mielina/química , Animales , Conducta Animal , Peso Corporal , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ratones , Modelos Genéticos , Mutación , Vaina de Mielina/genética , Oligodendroglía/citología , Tamaño de los Órganos , Transcripción GenéticaRESUMEN
Trophic factor signaling is important for the migration, differentiation, and survival of enteric neurons during development. The mechanisms that regulate the maturation of enteric neurons in postnatal life, however, are poorly understood. Here, we show that transcriptional cofactor HIPK2 (homeodomain interacting protein kinase 2) is required for the maturation of enteric neurons and for regulating gliogenesis during postnatal development. Mice lacking HIPK2 display a spectrum of gastrointestinal (GI) phenotypes, including distention of colon and slowed GI transit time. Although loss of HIPK2 does not affect the enteric neurons in prenatal development, a progressive loss of enteric neurons occurs during postnatal life in Hipk2(-/-) mutant mice that preferentially affects the dopaminergic population of neurons in the caudal region of the intestine. The mechanism by which HIPK2 regulates postnatal enteric neuron development appears to involve the response of enteric neurons to bone morphogenetic proteins (BMPs). Specifically, compared to wild type mice, a larger proportion of enteric neurons in Hipk2(-/-) mutants have an abnormally high level of phosphorylated Smad1/5/8. Consistent with the ability of BMP signaling to promote gliogenesis, Hipk2(-/-) mutants show a significant increase in glia in the enteric nervous system. In addition, numbers of autophagosomes are increased in enteric neurons in Hipk2(-/-) mutants, and synaptic maturation is arrested. These results reveal a new role for HIPK2 as an important transcriptional cofactor that regulates the BMP signaling pathway in the maintenance of enteric neurons and glia, and further suggest that HIPK2 and its associated signaling mechanisms may be therapeutically altered to promote postnatal neuronal maturation.
Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Proteínas Portadoras/fisiología , Dopamina/fisiología , Sistema Nervioso Entérico/enzimología , Neuroglía/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/crecimiento & desarrollo , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Neuroglía/enzimología , Neuronas/citología , Neuronas/enzimologíaRESUMEN
The Pit1-Oct1-Unc86 domain (POU domain) transcription factor Brn3a controls sensory neuron survival by regulating the expression of Trk receptors and members of the Bcl-2 family. Loss of Brn3a leads to a dramatic increase in apoptosis and severe loss of neurons in sensory ganglia. Although recent evidence suggests that Brn3a-mediated transcription can be modified by additional cofactors, the exact mechanisms are not known. Here, we report that homeodomain interacting protein kinase 2 (HIPK2) is a pro-apoptotic transcriptional cofactor that suppresses Brn3a-mediated gene expression. HIPK2 interacts with Brn3a, promotes Brn3a binding to DNA, but suppresses Brn3a-dependent transcription of brn3a, trkA, and bcl-xL. Overexpression of HIPK2 induces apoptosis in cultured sensory neurons. Conversely, targeted deletion of HIPK2 leads to increased expression of Brn3a, TrkA, and Bcl-xL, reduced apoptosis and increases in neuron numbers in the trigeminal ganglion. Together, these data indicate that HIPK2, through regulation of Brn3a-dependent gene expression, is a critical component in the transcriptional machinery that controls sensory neuron survival.
Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Transcripción/fisiología , Animales , Apoptosis , Western Blotting , Supervivencia Celular , ADN/metabolismo , ADN Complementario/metabolismo , Regulación hacia Abajo , Exones , Eliminación de Gen , Marcación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Luciferasas/metabolismo , Ratones , Modelos Biológicos , Modelos Genéticos , Mutación , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Receptor trkA/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factor de Transcripción Brn-3 , Factor de Transcripción Brn-3A , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , Proteína bcl-XRESUMEN
Alterations in gene dosage due to copy number variation are associated with autism spectrum disorder, intellectual disability (ID), and other psychiatric disorders. The nervous system is so acutely sensitive to the dose of methyl-CpG-binding protein 2 (MeCP2) that even a twofold change in MeCP2 protein-either increased or decreased-results in distinct disorders with overlapping features including ID, autistic behavior, and severe motor dysfunction. Rett syndrome is caused by loss-of-function mutations in MECP2, whereas duplications spanning the MECP2 locus result in MECP2 duplication syndrome (MDS), which accounts for ~1% of X-linked ID. Despite evidence from mouse models that restoring MeCP2 can reverse the course of disease, there are currently no U.S. Food and Drug Administration-approved therapies available to clinically modulate MeCP2 abundance. We used a forward genetic screen against all known human kinases and phosphatases to identify druggable regulators of MeCP2 stability. Two putative modulators of MeCP2, HIPK2 (homeodomain-interacting protein kinase 2) and PP2A (protein phosphatase 2A), were validated as stabilizers of MeCP2 in vivo. Further, pharmacological inhibition of PP2A in vivo reduced MeCP2 in the nervous system and rescued both overexpression and motor abnormalities in a mouse model of MDS. Our findings reveal potential therapeutic targets for treating disorders of altered MECP2 dosage.
Asunto(s)
Pruebas Genéticas , Proteína 2 de Unión a Metil-CpG/metabolismo , Interferencia de ARN , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Reproducibilidad de los ResultadosRESUMEN
Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Proteína C9orf72/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila , Prueba de Complementación Genética , Ratones Noqueados , Ratones Transgénicos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteína FUS de Unión a ARN/metabolismoRESUMEN
Neural circuits involving midbrain dopaminergic (DA) neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor ß (TGF-ß) signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-ß type II receptor in DA neurons also disrupts the balance in TGF-ß1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-ß signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-ß in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.
Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Aprendizaje Inverso/fisiología , Factor de Crecimiento Transformador beta1/genética , Animales , Dendritas/genética , Dendritas/fisiología , Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Regulación de la Expresión Génica , Humanos , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal/genética , Sinapsis/genética , Sinapsis/metabolismo , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas Motoras/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Biomarcadores/análisis , Proteínas Portadoras/genética , Muerte Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/genética , Ratones Transgénicos , Neuroglía/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS proteins and interfered with the normal interactions between FUS and histone deacetylase 1 (HDAC1). Consequently, FUS-R521C mice exhibited evidence of DNA damage as well as profound dendritic and synaptic phenotypes in brain and spinal cord. To provide insights into these defects, we screened neural genes for nucleotide oxidation and identified brain-derived neurotrophic factor (Bdnf) as a target of FUS-R521C-associated DNA damage and RNA splicing defects in mice. Compared with WT FUS, mutant FUS-R521C proteins formed a more stable complex with Bdnf RNA in electrophoretic mobility shift assays. Stabilization of the FUS/Bdnf RNA complex contributed to Bdnf splicing defects and impaired BDNF signaling through receptor TrkB. Exogenous BDNF only partially restored dendrite phenotype in FUS-R521C neurons, suggesting that BDNF-independent mechanisms may contribute to the defects in these neurons. Indeed, RNA-seq analyses of FUS-R521C spinal cords revealed additional transcription and splicing defects in genes that regulate dendritic growth and synaptic functions. Together, our results provide insight into how gain-of-function FUS mutations affect critical neuronal functions.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Daño del ADN , Empalme del ARN , Proteína FUS de Unión a ARN/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Cricetinae , Femenino , Histona Desacetilasa 1/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/metabolismo , Mutación Missense , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/patología , Sinapsis/metabolismo , TranscriptomaRESUMEN
Transcriptional control by beta-catenin and lymphoid enhancer-binding factor 1 (LEF1)/T cell factor regulates proliferation in stem cells and tumorigenesis. Here we provide evidence that transcriptional co repressor homeodomain interacting protein kinase 2 (HIPK2) controls the number of stem and progenitor cells in the skin and the susceptibility to develop squamous cell carcinoma. Loss of HIPK2 leads to increased proliferative potential, more rapid G1-S transition in cell cycle, and expansion of the epidermal stem cell compartment. Among the critical regulators of G1-S transition in the cell cycle, only cyclin D1 is selectively up-regulated in cells lacking HIPK2. Conversely, overexpression of HIPK2 suppresses LEF1/beta-catenin-mediated transcriptional activation of cyclin D1 expression. However, deletion of the C-terminal YH domain of HIPK2 completely abolishes its ability to recruit another transcriptional corepressor CtBP and suppress LEF1/beta-catenin-mediated transcription. To determine whether loss of HIPK2 leads to increased susceptibility to tumorigenesis, we treat wild-type, Hipk2+/-, andHipk2-/- mice with the two-stage carcinogenesis protocol. Our results indicate that more skin tumors are induced in Hipk2+/- and Hipk2-/- mutants, with most of the tumors showing shortened incubation time and malignant progression. Together, our results indicate that HIPK2 is a tumor suppressor that controls proliferation by antagonizing LEF1/beta-catenin-mediated transcription. Loss of HIPK2 synergizes with activation of H-ras to induce tumorigenesis.
Asunto(s)
Proteínas Portadoras/fisiología , Células Epidérmicas , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Represoras/fisiología , Neoplasias Cutáneas/prevención & control , Células Madre/citología , beta Catenina/fisiología , Animales , Proliferación Celular , Células Cultivadas , Ciclina D1/genética , Queratinocitos/patología , Factor de Unión 1 al Potenciador Linfoide/fisiología , Ratones , Activación TranscripcionalRESUMEN
Mouse Numb homologs antagonize Notch1 signaling pathways through largely unknown mechanisms. Here we demonstrate that conditional mouse mutants with deletion of numb and numblike in developing sensory ganglia show a severe reduction in axonal arborization in afferent fibers, but no deficit in neurogenesis. Consistent with these results, expression of Cre recombinase in sensory neurons from numb conditional mutants results in reduced endocytosis, a significant increase in nuclear Notch1, and severe reductions in axon branch points and total axon length. Conversely, overexpression of Numb, but not mutant Numb lacking alpha-adaptin-interacting domain, leads to accumulation of Notch1 in markedly enlarged endocytic-lysosomal vesicles, reduced nuclear Notch1, and dramatic increases in axonal length and branch points. Taken together, our data provide evidence for previously unidentified functions of Numb and Numblike in sensory axon arborization by regulating Notch1 via the endocytic-lysosomal pathways.