Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 232: 113251, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121260

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is extensively used as an additive to produce plastics, but it may damage non-target organisms in soil. In this study, the effects of DEHP on Folsomia candida in terms of survival, reproduction, enzyme activities, and DNA damage were investigated in spiked artificial soil using a multi-biomarker strategy. The 7-day LC50 (median lethal concentration) and 28-day EC50 (median effect concentration) values of DEHP were 1256.25 and 19.72 mg a.i. (active ingredient) kg-1 dry soil, respectively. Biomarkers involved in antioxidant defense including catalase (CAT-catalase), glutathione S-transferases (GST), detoxifying enzymes including acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and peroxidative damage (LPO-lipid peroxide) were also measured (EC10, EC20, and EC50) after exposure for 2, 4, 7, and 14 days. The Comet assay was also applied to assess the level of genetic damage. The activity of CAT and LPO was drastically enhanced by the highest dose (EC50) of DEHP on day two. The activities of GST and AChE in DEHP treatment groups were found to be blocked. In contrast, the activity of CYP450 was significantly enhanced compared to the respective control groups during the first four days of incubation. The Comet assay in F.candida demonstrated that DEHP (EC50) could induce DNA damage. The obtained multi-biomarker data were analyzed using an integrated biomarker response (IBR) index, indicating that limited-time exposure triggered higher stress than long-term exposure at low concentrations of DEHP. These results demonstrate that DEHP may cause biochemical and genetic toxicity to F. candida, which illustrated the potential risks of DEHP in the soil environment and might affect soil ecosystem processes. Further studies are necessary to elucidate the toxic mechanisms of DEHP on other non-target organisms in soil.


Asunto(s)
Artrópodos , Dietilhexil Ftalato , Acetilcolinesterasa , Animales , Biomarcadores , Dietilhexil Ftalato/toxicidad , Ecosistema , Ácidos Ftálicos
2.
Sci Total Environ ; 858(Pt 3): 159955, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372176

RESUMEN

This study investigated an effective strategy for remediating antimony (Sb)-contaminated soil using the bacterial strain screened from Sb-contaminated fern rhizospheres due to its superior growth-promoting, heavy-metal(loid) resistant, and antibiotic-tolerant characteristics. The strain that belongs to Cupriavidus sp. was determined by 16S rRNA sequencing and showed no morphological changes when grown with high concentrations of Sb (608.8 mg/L). The strain showed prominent indole acetic acid (IAA), phosphate-solubilizing abilities, and ACC deaminase activity under Sb stress. Moreover, IAA and soluble phosphate levels increased in the presence of 608.8 mg/L Sb. Inoculation of rape seedlings with Cupriavidus sp. S-8-2 enhanced several morphological and biochemical growth features compared to untreated seedlings grown under Sb stress. Inoculation of Cupriavidus sp. S-8-2 increased root weight by more than four-fold for fresh weight and over two-fold for dry weight, despite high environmental Sb. The strain also reduced Sb-mediated oxidative stress and malondialdehyde contents by reducing Sb absorption, thus alleviating Sb-induced toxicity. Environmental Scanning Electron Microscope (ESEM) imaging and dilution plating technique revealed Cupriavidus sp. S-8-2 is localized on the surface of roots. Identifying the Sb-resistant plant growth-promoting bacterium suggested its usefulness in the remediation of contaminated agricultural soil and for the promotion of crop growth. We highly recommend the strain for further implementation in field experiments.


Asunto(s)
Brassica napus , Cupriavidus , Antimonio/toxicidad , Plantones , ARN Ribosómico 16S , Fosfatos
3.
Mitochondrial DNA B Resour ; 7(1): 247-248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35087943

RESUMEN

Tetradium daniellii (Benn.) T. G. Hartley is an important medicinal, ornamental, and timber tree species and belongs to genus Tetradium in family of Rutaceae. It is widely distributed in warm temperate deciduous broad-leaved forest areas in northern China, Korean Peninsula and Japan. In this study, we sequenced its sample and determined complete chloroplast genome. The CP genome of T. daniellii has a circle structure with the length 158,446 bp, includes a small single copy region (17, 972 bp), a large single copy (86, 478 bp) and two inverted repeats (26,998 bp). There were 131 genes, which included 86 protein-coding genes, 8 rRNA and 37 tRNA, and overall GC content covered by 38.3%. The gene trnK-UUU, rps16, trnG-UCC, atpF, rpoC1, trnL-UAA, trnV-UAC, petB, petD, rpl16, rpl2, ndhB, trnI-GAU, trnA-UGC and ndhA contained an intron; gene clpP, ycf3 contained 2 introns. The phylogenetic result showed that T. daniellii had the closest relationship with Tetradium ruticarpum (NC_052830).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA