Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686364

RESUMEN

Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.


Asunto(s)
Antineoplásicos , Enfermedades Renales , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapias en Investigación , División Celular , Inflamación , Enfermedades Renales/tratamiento farmacológico , Mamíferos , Neoplasias/tratamiento farmacológico
2.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239937

RESUMEN

The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Animales , Humanos , Agregado de Proteínas , Proteostasis , Deficiencias en la Proteostasis/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175493

RESUMEN

Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can induce autophagy and promote lysosomal biogenesis in cancer cells. However, studies in Zkscan3 knockout mice showed that the deficiency of ZKSCAN3 did not induce autophagy or increase lysosomal biogenesis. In order to further explore the role of ZKSCAN3 in the transcriptional regulation of autophagic genes in human cancer and non-cancer cells, we generated ZKSCAN3 knockout HK-2 (non-cancer) and Hela (cancer) cells via the CRISPR/Cas9 system and analyzed the differences in gene expression between ZKSCAN3 deleted cells and non-deleted cells through fluorescence quantitative PCR, western blot and transcriptome sequencing, with special attention to the differences in expression of autophagic and lysosomal genes. We found that ZKSCAN3 may be a cancer-related gene involved in cancer progression, but not an essential transcriptional repressor of autophagic or lysosomal genes, as the lacking of ZKSCAN3 cannot significantly promote the expression of autophagic and lysosomal genes.


Asunto(s)
Autofagia , Regulación de la Expresión Génica , Animales , Ratones , Humanos , Autofagia/genética , Células HeLa , Lisosomas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Molecules ; 27(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408755

RESUMEN

Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.


Asunto(s)
Enfermedades Renales , Neoplasias , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Chaperonas Moleculares/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
5.
Inorg Chem ; 60(3): 1352-1358, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476141

RESUMEN

Herein, a surface site engineering strategy is used to construct a porous Z-scheme heterojunction photocatalyst for photocatalytic hydrogen evolution (PHE) by integration of BiOI in a mesoporous Zr-based metal-organic framework (MOF) NU-1000. Three high-quality and highly dispersed BiOI@NU-1000 heterojunction materials are synthesized, and a set of methods is used to characterize these materials, indicating that the BiOI@NU-1000 heterojunction can retain high porosity and crystallinity of the parent NU-1000. Furthermore, the built-in electric field of the BiOI@NU-1000 composite can effectively tune the band gap, promote the separation of photoinduced charge carriers, improve photocurrent intensity, and reduce photoelectric impedance. Under visible-light irradiation, BiOI@NU-1000-2 showed the best photocatalytic performance in the field of MOF-based photocatalysts for PHE, with a hydrogen production rate of up to 610 µmol h-1 g-1. This study will open up opportunities for the construction of Z-scheme photocatalysts based on the highly porous MOF materials to inspire the development of innovative photocatalysts.

6.
Mol Reprod Dev ; 87(2): 223-230, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32011766

RESUMEN

Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh-Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α-smooth muscle actin-labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3ß-HSD double-positive fetal LCs could be observed in Amh-Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3ß-HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs' central role in fetal testis development.


Asunto(s)
Diferenciación Celular/genética , Toxina Diftérica/genética , Madurez de los Órganos Fetales , Integrasas/genética , Fragmentos de Péptidos/genética , Túbulos Seminíferos/embriología , Células de Sertoli/metabolismo , Animales , Proliferación Celular/genética , Toxina Diftérica/metabolismo , Células Germinativas/metabolismo , Integrasas/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Modelos Animales , Fragmentos de Péptidos/metabolismo , Ratas Transgénicas , Espermatogénesis
7.
FASEB J ; 32(3): 1653-1664, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29183964

RESUMEN

The assembly of the blood-testis barrier (BTB) during postnatal development is crucial to support meiosis. However, the role of germ cells in BTB assembly remains unclear. Herein, KitW/KitWV mice were used as a study model. These mice were infertile, failing to establish a functional BTB to support meiosis due to c-Kit mutation. Transplantation of undifferentiated spermatogonia derived from normal mice into the testis of KitW/KitWV mice triggered functional BTB assembly, displaying cyclic remodeling during the epithelial cycle. Also, transplanted germ cells were capable of inducing Leydig cell testosterone production, which could enhance the expression of integral membrane protein claudin 3 in Sertoli cells. Early spermatocytes were shown to play a vital role in directing BTB assembly by expressing claudin 3, which likely created a transient adhesion structure to mediate BTB and cytoskeleton assembly in adjacent Sertoli cells. In summary, the positive modulation of germ cells on somatic cell function provides useful information regarding somatic-germ cell interactions.-Li, X.-Y., Zhang, Y., Wang, X.-X., Jin, C., Wang, Y.-Q., Sun, T.-C., Li, J., Tang, J.-X., Batool, A., Deng, S.-L., Chen, S.-R., Cheng, C. Y., Liu, Y.-X. Regulation of blood-testis barrier assembly in vivo by germ cells.


Asunto(s)
Barrera Hematotesticular/metabolismo , Claudina-3/biosíntesis , Células Intersticiales del Testículo/metabolismo , Células de Sertoli/metabolismo , Espermatogonias/metabolismo , Animales , Barrera Hematotesticular/citología , Claudina-3/genética , Células Intersticiales del Testículo/citología , Masculino , Ratones , Ratones Transgénicos , Células de Sertoli/citología , Espermatogonias/citología
8.
J Biol Chem ; 292(14): 5676-5684, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28193841

RESUMEN

To ensure correct spatial and temporal patterning, embryos must maintain pluripotent cell populations and control when cells undergo commitment. The newly identified nucleoprotein Akirin has been shown to modulate the innate immune response through epigenetic regulation and to play important roles in other physiological processes, but its role in neural development remains unknown. Here we show that Akirin2 is required for neural development in Xenopus and that knockdown of Akirin2 expands the expression of the neural progenitor marker Sox2 and inhibits expression of the differentiated neuronal marker N-tubulin. Akirin2 acts antagonistically to Geminin, thus regulating Sox2 expression, and maintains the neural precursor state by participating in the Brg1/Brm-associated factor (BAF) complex mediated by BAF53a. Additionally, Akirin2 also modulates N-tubulin expression by acting upstream of neuronal differentiation 1 (NeuroD) and in parallel with neurogenin-related 1 (Ngnr1) during terminal neuronal differentiation. Thus, our results reveal a novel model in which Akirin2 precisely coordinates and temporally controls Xenopus neural development.


Asunto(s)
Diferenciación Celular/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Geminina/genética , Geminina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Represoras/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
BMC Biotechnol ; 18(1): 60, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253761

RESUMEN

BACKGROUND: The CRISPR/Cas9 system has been widely used to generate gene knockout/knockin models by inducing frameshift mutants in cell lines and organisms. Several recent studies have reported that such mutants can lead to in-frame exon skipping in cell lines. However, there was little research about post-transcriptional effect of CRISPR-mediated gene editing in vivo. RESULTS: We showed that frameshift indels also induced complete or stochastic exon skipping by deleting different regions to influence pre-mRNA splicing in vivo. In the migratory locust, the missing 55 bp at the boundary of intron 3 and exon 4 of an olfactory receptor gene, LmigOr35, resulted in complete exon 4 skipping, whereas the lacking 22 bp in exon 4 of LmigOr35 only resulted in stochastic exon 4 skipping. A single sgRNA induced small insertions or deletions at the boundary of intron and exon to disrupt the 3' splicing site causing completely exon skipping, or alternatively induce small insertions or deletions in the exon to stochastic alter splicing causing the stochastic exon skipping. CONCLUSIONS: These results indicated that complete or stochastic exon skipping could result from the CRISPR-mediated genome editing by deleting different regions of the gene. Although exon skipping caused by CRISPR-mediated editing was an unexpected outcome, this finding could be developed as a technology to investigate pre-mRNA splicing or to cure several human diseases caused by splicing mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Saltamontes/genética , Empalme del ARN , Migración Animal , Animales , Exones , Mutación del Sistema de Lectura , Saltamontes/fisiología , Mutación INDEL , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Eliminación de Secuencia
10.
BMC Biotechnol ; 18(1): 61, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285700

RESUMEN

BACKGROUND: Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) has been wildly used to generate gene knockout models through inducing indels causing frame-shift. However, there are few studies concerning the post-transcript effects caused by CRISPR-mediated genome editing. RESULTS: In the present study, we showed that gene knockdown model also could be generated using CRISPR-mediated gene editing by disrupting the boundary of exon and intron in mice (C57BL/6 J). CRISPR induced indel at the boundary of exon and intron (5' splice site) caused alternative splicing and produced multiple different mRNAs, most of these mRNAs introduced premature termination codon causing down expression of the gene. CONCLUSIONS: These results showed that alternative splicing mutants were able to generate through CRISPR-mediated genome editing by deleting the boundary of exon and intron causing disruption of 5' splice site. Although alternative splicing was an unexpected outcome, this finding could be developed as a technology to generate gene knockdown models or to investigate pre-mRNA splicing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Silenciamiento del Gen/métodos , Ratones/genética , Precursores del ARN/genética , Empalme del ARN , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Exones , Mutación INDEL , Intrones , Ratones Endogámicos C57BL
11.
J Assist Reprod Genet ; 35(2): 229-236, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29152689

RESUMEN

PURPOSE: Spermatozoa maturation, a process required for spermatozoa to acquire progressive motility and the ability to fertilize ova, primarily occurs in the caput and corpus of the epididymis. Despite considerable efforts, the factor(s) promoting epididymal sperm maturation remains unclear. Recently, WNT signaling has been implicated in epididymal sperm maturation. METHODS: To further investigate WNT signaling function in epididymal sperm maturation, we generated Wntless conditional knockout mice (Wls cKO), Wls flox/flox ; Lcn5-Cre. RESULTS: In these mice, WNTLESS (WLS), a conserved membrane protein required for all WNT protein secretion, was specifically disrupted in the principal cells of the caput epididymidis. Immunoblot analysis showed that WLS was significantly reduced in the caput epididymidis of Wls cKO mice. In the caput epididymidis of Wls cKO mice, WNT 10A and WNT 2b, which are typically secreted by the principal cells of the caput epididymis, were not secreted. Interestingly, sperm motility analysis showed that the WLS deficiency in the caput epididymidis had no effect on sperm motility. Moreover, fertility tests showed that Wls cKO male mice had normal fertility. CONCLUSION: These results indicate that the disruption of WLS in principal cells of the caput epididymidis inhibits WNT protein secretion but has no effect on sperm motility and male fertility, suggesting that WNT signaling in the caput epididymidis may be dispensable for epididymal sperm maturation in mice.


Asunto(s)
Epidídimo/citología , Maduración del Esperma/fisiología , Vía de Señalización Wnt/fisiología , Animales , Epidídimo/fisiología , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Índice de Embarazo , Transporte de Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Motilidad Espermática , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
12.
Reproduction ; 154(5): 615-625, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28982932

RESUMEN

Spermatogenesis is crucial for male fertility and is therefore tightly controlled by a variety of epigenetic regulators. However, the function of enhancer of zeste homolog 2 (EZH2) in spermatogenesis and the molecular mechanisms underlying its activity remain poorly defined. Here, we demonstrate that deleting EZH2 promoted spermatogonial differentiation and apoptosis. EZH2 is expressed in spermatogonia, spermatocytes and round and elongated spermatids from stage 9 to 11 but not in leptotene and zygotene spermatocytes. Knocking down Ezh2 in vitro using a lentivirus impaired self-renewal in spermatogonial stem cells (SSCs), and the conditional knockout of Ezh2 in spermatogonial progenitors promoted precocious spermatogonial differentiation. EZH2 functions to balance self-renewal and differentiation in spermatogonia by suppressing NEUROG3 and KIT via a direct interaction that is independent of its histone methyltransferase activity. Moreover, deleting Ezh2 enhanced the activation of CASP3 in spermatids, resulting in reduced spermatozoa production. Collectively, these data demonstrate that EZH2 plays a nonclassical role in the regulation of spermatogonial differentiation and apoptosis in murine spermatogenesis.


Asunto(s)
Apoptosis/genética , Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Espermatogonias/fisiología , Animales , Células Cultivadas , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Espermatogénesis/genética
13.
Mol Reprod Dev ; 83(7): 615-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27265621

RESUMEN

SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFß) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Fertilidad/fisiología , Proteína Smad4/metabolismo , Espermatogénesis/fisiología , Testículo/crecimiento & desarrollo , Animales , Eliminación de Gen , Masculino , Ratones , Ratones Transgénicos , Proteína Smad4/genética
14.
J Pineal Res ; 60(4): 435-47, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26993286

RESUMEN

Promotion of spermatogonial stem cell (SSC) differentiation into functional sperms under in vitro conditions is a great challenge for reproductive physiologists. In this study, we observed that melatonin (10(-7) M) supplementation significantly enhanced the cultured SSCs differentiation into haploid germ cells. This was confirmed by the expression of sperm special protein, acrosin. The rate of SSCs differentiation into sperm with melatonin supplementation was 11.85 ± 0.93% which was twofold higher than that in the control. The level of testosterone, the transcriptions of luteinizing hormone receptor (LHR), and the steroidogenic acute regulatory protein (StAR) were upregulated with melatonin treatment. At the early stage of SSCs culture, melatonin suppressed the level of cAMP, while at the later stage, it promoted cAMP production. The similar pattern was observed in testosterone content. Expressions for marker genes of meiosis anaphase, Dnmt3a, and Bcl-2 were upregulated by melatonin. In contrast, Bax expression was downregulated. Importantly, the in vitro-generated sperms were functional and they were capable to fertilize oocytes. These fertilized oocytes have successfully developed to the blastula stage.


Asunto(s)
Antioxidantes/farmacología , Diferenciación Celular/efectos de los fármacos , Melatonina/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/efectos de los fármacos , Animales , Western Blotting , Células Cultivadas , Femenino , Citometría de Flujo , Inmunohistoquímica , Técnicas In Vitro , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Ovinos , Inyecciones de Esperma Intracitoplasmáticas/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos
15.
Front Pharmacol ; 15: 1392203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633616

RESUMEN

Cancer is the main cause of death in the world. There are several therapies that are in practice for cancer cure including radiotherapy, chemotherapy, and surgery. Among the chemotherapies, natural products are considered comparable safe, easily available and cost effective. Approximately 60% of cancer approved FDA drugs are natural products including vinblastine, doxorubicin, and paclitaxel. These natural products have complex structures due to which they work against cancer through different molecular pathways, STAT3, NF-kB, PI3K/AKT/mTOR, cell cycle arrest, mitochondrial dependent pathway, extrinsic apoptosis pathway, autophagy, mitophagy and ferroptosis. AA is a natural abietane diterpenoid compound from Pinus palustris and Pimenta racemose var. grissea with different pharmacological activities including anti-inflammatory, anti-convulsant, anti-obesity and anti-allergic. Recently it has been reported with its anticancer activities through different molecular mechanisms including NF-kB, PI3K/AKT, call cycle arrest at G0/G1 phase, mitochondrial dependent pathway, extrinsic apoptosis pathway, AMPK pathway and ferroptosis pathways. The literature survey reveals that there is no review on AA anticancer molecular mechanisms, therefore in current review, we summarize the anticancer molecular mechanisms of AA.

16.
Front Immunol ; 15: 1387292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779674

RESUMEN

Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.


Asunto(s)
Comunicación Celular , Diálisis Peritoneal , Peritoneo , Células del Estroma , Humanos , Diálisis Peritoneal/efectos adversos , Peritoneo/patología , Peritoneo/inmunología , Animales , Células del Estroma/inmunología , Comunicación Celular/inmunología , Inflamación/inmunología , Peritonitis/inmunología
17.
Cell Death Dis ; 14(7): 473, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500613

RESUMEN

The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.


Asunto(s)
Estrés del Retículo Endoplásmico , Enfermedades Renales , Humanos , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada , Enfermedades Renales/patología , Autofagia , Homeostasis , Lípidos
18.
Biomed Pharmacother ; 165: 115122, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37413899

RESUMEN

Nephrotoxicity is a major side effect of cisplatin treatment of solid tumors in the clinical setting. Long-term low-dose cisplatin administration causes renal fibrosis and inflammation. However, few specific medicines with clinical application value have been developed to reduce or treat the nephrotoxic side effects of cisplatin without affecting its tumor-killing effect. The present study analyzed the potential reno-protective effect and mechanism of asiatic acid (AA) in long-term cisplatin-treated nude mice suffering from tumors. AA treatment significantly attenuated renal injury, inflammation, and fibrosis induced by long-term cisplatin injection in tumor-bearing mice. AA administration notably suppressed tubular necroptosis and improved the autophagy-lysosome pathway disruption caused by chronic cisplatin treatment in tumor-transplanted nude mice and HK-2 cells. AA promoted transcription factor EB (TFEB)-mediated lysosome biogenesis and reduced the accumulation of damaged lysosomes, resulting in enhanced autophagy flux. Mechanistically, AA increased TFEB expression by rebalancing Smad7/Smad3, whereas siRNA inhibition of Smad7 or TFEB abolished the effect of AA on autophagy flux in HK-2 cells. In addition, AA treatment did not weaken, but actually enhanced the anti-tumor effect of cisplatin, as evidenced by the promoted tumor apoptosis and inhibited proliferation in nude mice. In summary, AA alleviates cisplatin-induced renal fibrosis in tumor-bearing mice by improving the TFEB-mediated autophagy-lysosome pathway.


Asunto(s)
Cisplatino , Neoplasias , Ratones , Animales , Cisplatino/farmacología , Ratones Desnudos , Autofagia , Fibrosis , Neoplasias/metabolismo , Inflamación/metabolismo , Lisosomas/metabolismo
19.
Front Immunol ; 14: 1213473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809091

RESUMEN

Diabetic kidney disease (DKD) is a chronic inflammatory condition that affects approximately 20-40% of individuals with diabetes. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors, emerging as novel hypoglycemic agents, have demonstrated significant cardiorenal protective effects in patients with DKD. Initially, it was believed that the efficacy of SGLT-2 inhibitors declined as the estimated glomerular filtration rate (eGFR) decreased, which led to their preferential use in DKD patients at G1-G3 stages. However, recent findings from the DAPA-CKD and EMPA-KIDNEY studies have revealed equally beneficial cardiorenal effects of SGLT-2 inhibitors in individuals at stage G4 DKD, although the underlying mechanism behind this phenomenon remains unclear. In this comprehensive analysis, we provide a systematic review of the mechanisms and functioning of SGLT-2 inhibitors, potential renal protection mechanisms, and the therapeutic efficacy and safety of SGLT-2 inhibitors in kidney diseases, with a particular focus on stage G4 DKD. Gaining a deeper understanding of the renal protective effect of SGLT-2 inhibitors and their underlying mechanisms is highly significance for the successful utilization of these inhibitors in the treatment of diverse kidney disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Riñón
20.
J Immunol Res ; 2023: 7625817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692838

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nefritis Lúpica/terapia , Lupus Eritematoso Sistémico/terapia , Riñón , Estrés del Retículo Endoplásmico , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA